
�
�

�
�

�

� �

1

Unit testing and Java

Zeger Hendrikse
Cas Stigter

�
�

�
�

�

� �

2

Importance of testing

Testing should occur throughout the development lifecycle.
Testing should never be an afterthought. Integrating testing

into the development process brings many benefits [5].

�
�

�
�

�

� �

3

Content

� Part I
� General motivation & introduction (J)unit testing
� Testing simple Java classes + demo
� Integration with IDEs and Ant

� Part II
� …and beyond

• In-container testing
• HttpUnit, DBUnit, Cactus, JUnitPerf, JMeter

� Part III
� Book reviews demo application

� Part IV
� Workshop

�
�

�
�

�

� �

4

Introduction

PART I

�
�

�
�

�

� �

5

Testing activities (1/2)

Tested
Subsystem

Subsystem
Code

FunctionalIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsystem
Code

Subsystem
Code

All tests by developerAll tests by developer

Integrated
Subsystems

© xhyuan@ncat.edu

�
�

�
�

�

� �

6

Testing activities (2/2)

Global
Requirements

User’s understanding
Tests by developerTests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests by userTests by user

Tests by clientTests by client

© xhyuan@ncat.edu

�
�

�
�

�

� �

7

Unit tests

� Unit test
� test behaviour of single independent unit of work
� System.out.println() is not enough!

� Unit test best practices
� Each test must run independently of all other unit tests
� Errors must be detected and reported test by test
� It must be easy to define which unit test will run (automation)

� JUnit design goals. The framework must help us
� write useful tests
� create tests that retain their value over time
� Lower the cost of writing tests by reusing code

�
�

�
�

�

� �

8

eXtreme Programming

XP (not exhaustive)
� Simplicity

� advocates doing “the simplest thing that could possibly work”
� avoid wasted effort (YAGNI=You Aren’t Going To Need It)

� TDD (Test Driven Development)
� Develop tests before actual code!
� If bug is found � create test case � reproduce it � fix it
� Code that hasn’t been tested, doesn’t exist

� Incrementally develop (and refactor!) your code
� IMHO only viable by above feature

� Pair programming
� …

�
�

�
�

�

� �

9

Unit testing and its relation to logging

� Offers “persistent debugging” (vs. session in debuggers)
� “…unit tests are valuable in indicating what may be

wrong with an object, but won’t necessarily indicate
where the problem is...” [5]

� “Code isn’t ready for production unless it is capable of
generating log messages and its log output can easily
be configured” [5] � As important as unit tests.

� No System.out : console output cannot be configured!
� Switched off
� Redirected
� Performance degradation

�
�

�
�

�

� �

10

JUnit structure

� TestCase
� Extends JUnit TestCase class
� Contains one or more testXXX() methods

� TestSuite

� Group of tests

� TestRunner

� Launcher of a suite of tests

TestCase BaseTestRunnerTestSuite TestResult+ =+

© sample taken from [1]

�
�

�
�

�

� �

11

JUnit example (1/3)

Package nl.amis.demo.calculator;

public class Calculator

{

public double add(double x,

double y)

{

return x + y;

}

}

1. Useful for separating test and app.
Code

2. We will test this method

© sample taken from [1]

�
�

�
�

�

� �

12

JUnit example (2/3)

package nl.amis.demo.calculator;

import junit.framework.TestCase;

public class CalculatorTest
extends TestCase

{

public void testAdd()

{

Calculator calculator =

new Calculator();

double result =

calculator.add(12, 34);

assertEquals(46, result, 0);

}

}

1. Tests in different folder, but in same
package!

2. Import JUnit stuff…

3. Extend from TestCase

4. Method must be called testXXX()
(reflection will find it)

5. Create an instance of the class to test

6. Generate test result…
7. … and check result.

© sample taken from [1]

�
�

�
�

�

� �

13

JUnit example (3/3)

Depending on available time:
� Demo setting up this project in JDeveloper

� Suite
� We need a container to contain all the tests/test cases
� A new instance of the TestCase class for each testXXX() method
� TestRunner automatically creates a TestSuite if you don’t provide one

• TestSuite scans your class for testXXX() methods, so default is:
public static Test suite()

{

return new TestSuite(TestCalculator.class);

}

�
�

�
�

�

� �

14

More realistic example

public static String[]

commaDelimitedListToStringArray(String s)

� Testing must encompass the following conditions
� Ordinary inputs (words and characters separated by commas)
� A null string, we expect an empty array on null input
� A single string (output single element array containing string)

� We simplify the test code by
� Including a private method that does the verification

© sample taken from [5]

�
�

�
�

�

� �

15

Test practices

JUnit best practices:
1. Write tests to interfaces
2. Don’t bother testing Java bean properties
3. Maximize test coverage
4. Don’t rely on the ordering of test cases
5. Avoid side effects
6. Read test data from the classpath , not the file

system
7. Avoid code duplication in test cases
8. TDD: test should fail first, to assure that the test is ok!

© Taken from [5]

�
�

�
�

�

� �

16

The 7 core classes of the JUnit test framework

1. Assert
� AssertEquals() , AssertNotNull() , …

2. TestResult
� Contains collection of errors and or failures

3. Test
� Can be run and passed to TestResult

4. TestListener
� Invoked of events during testing

5. TestCase
� Defines an environment (fixture, setup() , tearDown()) for running tests

6. TestSuite
� Runs a collection of TestCase ’s

7. BaseTestRunner
� Superclass for all test runners

�
�

�
�

�

� �

17

Testing for Exceptions

� To test if the right handling takes place when e.g. the database is down
� Example: retrieve an article from the DB that does not exist:

public void testGetFinderErrorResponse()
{

// Ask for an article that isn't there and see if
// we get a FinderException
try
{

org.bibtexml.session.ArticleFacade bean = getHome(). create();
ArticleDTO data = bean.readArticle(PUB_ID_3);
// this should have failed and we should be in the catch clause
fail("The article should not have been found here!") ;

}
catch (Exception e)
{

// We expect a FinderException here
assertEquals(FinderException.class, e.getClass());

}
}

�
�

�
�

�

� �

18

Definitions: fixtures, stubs & mock objects

� Fixture: “The set of common resources or data that you need to
run one or more tests” [1]

� Example: set up a database connection before testing

� Stub: “portion of code that is inserted at runtime in place of the
real code…to replace a complex behavior with a simpler one that
allows independent testing of some portion of the real code” [1]

� Mock object: “is created to stand in for an object that your code
will be collaborating with.” [1]

�
�

�
�

�

� �

19

JUnit and Ant

� Make unit testing an integral part of your project: Ant!

<junit printsummary=“yes” haltonfailure=“yes”>

<classpath refid=“master-classpath” />

<formatter type=“plain” />

<!-- JUnit classes are XXXTestSuite.java by conventio n -->

<batchtest fork=“yes”

todir=“${reports.dir}/name-${DSTAMP}-${TSTAMP}”>

<fileset dir=“${name-test.dir}”>

<include name=“**/*TestSuite.java” />

</fileset>

</batchtest>

</junit>

�
�

�
�

�

� �

20

Slogan Unit tests:

Keep the bar green to keep the code clean!

�
�

�
�

�

� �

21

Design patterns

Intermezzo I

�
�

�
�

�

� �

22

Intermezzo I: JUnit & Design Patterns (1/2)

� Composite pattern
� “Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly” [GoF].

� JUnit’s Test interface to run a test or a suite of tests or a suite
of a suite of tests.

� Command pattern
� “Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log
requests, and support undoable operations” [GoF].

� JUnit’s Test interface provides a command run() method for
both the TestSuite and TestCase .

�
�

�
�

�

� �

23

Intermezzo I: JUnit & Design Patterns (2/2)

� Collecting parameter
� Collect results over different methods by passing an object
� JUnit’s TestResult class is passed as collecting parameter

object.

� Observer (in JUnit, but we skip TestListener here)
� “Define a one to many dependency between objects so that

when one object changes state, all its dependants are notified
and updated automatically” [K. Beck, Smalltalk Best Practice Patterns]

� The TestRunner registering as a TestListener with the
TestResult is an example of the observer design pattern.

�
�

�
�

�

� �

24

Stubs, mocks and in-container testing

PART II

�
�

�
�

�

� �

25

In-container testing (vs. mock objects)

Mock objects:
� Do not require a container
� Pure unit tests
� Delivers real value if mocks

aren’t too complex
� “improves domain code by

preserving encapsulation,
reducing global dependencies
and clarifying the interaction
between classes”

� Difficulty: “...the discovery of
values and structures for
parameters that are passed
into the domain code”

In-container testing:
� Interactions with container too!

� So less “unit” than mock objects…

� Integration + deployment too!
� So less “unit” than mock objects…

� Still: Cactus tests individual
components as opposed to
HttpUnit (=acceptance testing).

�
�

�
�

�

� �

26

Testing business objects

� Testing business objects implemented without
using EJB
� Simply use JUnit, container services may be mocked

� Testing EJBs
� Write a test that is a remote client of the EJB container

(suitable for EJBs with remote interfaces)
� Write and deploy a test that executes within the application

server (requires additional test framework (e.g. cactus) +
complicates deployment)

� Work with stub objects (only feasible when EJBs have simple
requirements of the EJB container

�
�

�
�

�

� �

27

Testing database interaction

� Using mock objects

� Using JDBC helper classes (to set/verify/undo the
results in the database)

� Using DBunit, which we’ll discuss later in more detail

�
�

�
�

�

� �

28

Testing web interfaces

� Testing web-tier components
� Testing outside the container with Servlet Unit
� In-container testing with Cactus

� Acceptance testing web interfaces
� HttpUnit allows us to write acceptance tests that run outside of

the container

� Load testing web interfaces
� Microsoft’s Web Application Stress Tool (WAS), easy to use

and freely available
� JMeter

�
�

�
�

�

� �

29

In-container testing: Cactus (1/4)

� Cactus is an open source test framework, based on
JUnit, that allows in-container testing of EJBs, servlets,
JSP pages and servlet filters.

� Originally J2EEUnit, but legal issues with Sun’s J2EE…
� Generates implicit objects available in a web server

� e.g. HttpServletRequest , PageContext , FilterChain

� Transparently mimics client & server in one go

�
�

�
�

�

� �

30

In-container testing: Cactus (2/4)

© http://jakarta.apache.org/cactus/

� YYYTestCase=(ServletTestCase | FilterTestCase | JspTe stCase)

� XXX=name of the test case. Each YYYTestCase class contains several test cases.

�
�

�
�

�

� �

31

In-container testing: Cactus (3/4)

1. beginXXX(), pass information to the redirector
2. YYYTestCase opens the redirector connection
3. creation of server-side YYYTestCase instance

� assignment of HttpServletRequest etc. to instance
� executes test, results in ServletConfig servlet object

4. call setUp(), testXXX and tearDown() of YYYTestCase
5. client-side executes endXXX()

� you can assert cookies, HTTP header and/or HTTP content

6. Gathering the test result from ServletConfig and
pass it through to the JUnit test console/GUI.

�
�

�
�

�

� �

32

In-container testing: Cactus (4/4)

©
© the

© http://jakarta.apache.org/cactus/

�
�

�
�

�

� �

33

Cactus set-up

Info from [5]
1. Ensure that the classpath is set-up correctly!
2. Edit the web application’s web.xml to define the

Cactus “servlet redirector” servlet
� routes requests from the remote tests to the server-side test

instances

3. Include the test classes in the WAR.

4. Configure the Cactus client
� All necessary libraries for both client and server

�
�

�
�

�

� �

34

Cactus/Eclipse integration

� “The Eclipse plugin is a work in progress. In the past it
was working, but since we moved to the new Ant
integration it has been broken […] in the meantime, we
have removed the plugin download.”

� Solved by using Cactus/Jetty integration (Jetty plug-in)
� Jetty is embedded Web AS

• supports servlets, JSPs
• Used in stubbing the web server’s resources

� Advantages:
• Very fast,
• IDE independent
• Can set breakpoints for debugging

� Wrap tests in JettyTestSetup class provided by Cactus

�
�

�
�

�

� �

35

DBUnit

� DB set-up for testing can be done with Ant but:
� DbUnit adds in-container testing if DB is accessed by

container, e.g. J2EE container
� Verification of contents of DB after tests
� The database is reset with the contents of the XML file after

every test

� DB set-up is defined in flat XML file

�
�

�
�

�

� �

36

Book reviews demo application

PART III

�
�

�
�

�

� �

37

(J)Unit testing demo app. (1/3)

� BookReview web application
� Book review data model stored in Oracle DB (Ludo)

� Get all reviews or one complete review
� Read a review and/or modify it by updating/adding a paragraph
� Built with servlets, JSPs, Java classes and Oracle data base

�
�

�
�

�

� �

38

(J)Unit testing demo app. (2/3)

�
�

�
�

�

� �

39

(J)Unit testing demo app. (3/3)

� Shows (J)Unit testing in real example
� Application of in container testing (Cactus) & mock objects
� Shows use of

• JUnit
• Cactus

• HttpUnit (to validate output of JSPs)

• DBunit

�
�

�
�

�

� �

40

Design patterns

Intermezzo II

�
�

�
�

�

� �

41

Intermezzo II: Design Patterns revisited (1/2)

Design patterns used in book review demo app:
� Strategy (see Intermezzo I)

� Used here for request handling
� Key design pattern in Struts and Java Server Faces (JSF)

frameworks

� Inversion of control
� Handler object registers with the controller for an event
� In case of an event, the callback of the appropriate handler is

invoked
� Lets one properly manage event life cycle and plug in of

custom handlers
� IMPORTANT FOR UNIT TEST CASES

�
�

�
�

�

� �

42

Intermezzo II: Design Patterns revisited (2/2)

� MVC = Model (1) + View (2) + Controller (3)
� Key design pattern in Struts and JSF frameworks
1. Model is the data retrieved from the DB via façade interface
2. View is given to JSPs

1. Code still in JSPs, should be improved by using custom tag library

3. Controller is de AdminServlet

� Façade
� Offers a simple interface to (complex interacting) subsystems
� Here: retrieve all book reviews and/or a complete review

�
�

�
�

�

� �

43

Conclusions and references

�
�

�
�

�

� �

44

Conclusions

� “Testing should occur throughout the software life cycle.
testing should be a core activity of software
development” [5]

� Unit testing is usually the most important type of testing
� Not easily “unit-testable” may be a strong argument

against that particular technology, e.g. EJBs
� TDD is a core feature of XP
� Unit testing is fun!

�
�

�
�

�

� �

45

Workshop

PART IV

�
�

�
�

�

� �

46

References

1) “JUnit in Action”, V. Massol
2) “Java tools for eXtreme

Programming”, R. Hightower,
N. Lesiecki

3) http://www.junit.org/
4) “Eclipse in Action”, D.

Gallardo et al.
5) “Expert one-on-one J2EE

design and Development” by
Rod Johnson, Wrox 2002.

