
)ÎÔÒÏÄÕÃÔÉÏÎ ÔÏ 3ÔÒÅÁÍ %ØÐÌÏÒÅÒ ÁÎÄ
/ÒÁÃÌÅ %ÖÅÎÔ 0ÒÏÃÅÓÓÏÒ

In this hands-on, we will work with Stream Explorer and Oracle Event Processor- along with JMS, REST,

SOA Suite and EDN.

In the hands-on you are working with a VM running in Oracle Virtual Box. The VM contains the Linux

Ubuntu operating system, an Oracle 11gR2 XE database and JDeveloper 12.1.3 with integrated WebLogic

Server 12.1.3 that also contains the SOA Suite 12c Quick Start Installation. The Oracle Event Processor

12c is installed with the {ǘǊŜŀƳ 9ȄǇƭƻǊŜǊ άǇŀǘŎƘέ ŀǇǇƭƛŜŘ ǘƻ ƛǘΦ !ƴ h9t ŘƻƳŀƛƴ Ƙŀǎ ōŜŜƴ ŎǊŜŀǘŜŘΦ bƻǘŜ

that this domain runs completely outside the integrated WebLogic Server domain started from

JDeveloper and running the SOA Suite 12c.

The hands-on leads you through the following steps:

¶ learn the basics of Stream Explorer: how to get going with events produced from a CSV file and

simple event analysis

¶ learn more advanced Stream Explorer techniques ς both in terms of the analysis (enrichment

and pattern matching) and in terms of the integration and communication (using REST, JMS and

EDN)

¶ learn how to export a StreamExplorer application to an OEP project that can be edited and fine

tuned in JDeveloper, then redeployed to OEP

1. Getting started
The folder HandsOnStreamExplorerAndOEP_May2015 contains the Virtual Machine that you will be

using in this hands-on.

This VM is in a file called SX and OEP - JDev 12.1.3 with Oracle DB XE 11gR2 on

UbuntuHandsOnSOA_SIG19may2015.ova. You can import this file into Virtual Box. If you do not yet have

Virtual Box running on your machine, you can use the Virtual Box installer that is also in this directory.

Start Virtual Box. From the File menu, open the option Import Appliance.

The file selection dialog opens. Select file SX and OEP - JDev 12.1.3 with Oracle DB XE 11gR2 on

UbuntuHandsOnSOA_SIG19may2015.ova and press Open.

Press Next in the Import dialog:

Review and accept (or modify if you feel like it) the Appliance Settings. Press Import to start the import

process.

Importing the appliance will take a few minutes. When done, the VM is shown in the Virtual Box user

interface. Select it and press the Start icon to launch the VM.

When the VM is running, login with username/password: oracle/oracle

Note: User vagrant with password vagrant can be used to assume root privileges.

At the end of this document are some details about the configuration of the VM ς such as database

configuration and host folder mapping. The text document readme.txt that you find on the desktop also

contains such details:

The highlighted lines provide the instruction for running JDeveloper.

Start JDeveloper with the following steps:

¶ open a new terminal (from the launcher icon)

¶ change the directory: cd /u01/app/oracle/FMW12c/jdeveloper/jdev/bin/

¶ run jdev: ./jdev

The familiar splash window appears:

And after some time, the IDE is opened.

Start the OEP Server using the OEP Server connection in the Resources window as shown in the next

figure:

The console displays:

and after some time, the server is running.

Both the StreamExplorer GUI and the Visualizer console can now be accessed in the browser.

Start Firefox from the launcher:

And use the bookmark to open StreamExplorer:

The login page appears. Use wlevs/weblogic1 as the credentials for the login.

2. The Live Device Demo
We assume a large number of devices ς such as printers, copiers, sensors, detectors, coffee machines ς

spread across the globe ς and the cloud.

All devices continuously report their status, by sending a message every other second that contains their

device identifier, a code that can indicate the healthy status or an error and some additional details. The

sheer number of devices combined with the continuous stream of reports they sent in set the challenges

perimeters within which we have to implement fast and effective monitoring. Our specific challenge is:

άǿƘŜƴŜǾŜǊ ŀ ŘŜǾƛŎŜ ǊŜǇƻǊǘǎ ŀƴ ŜǊǊƻǊ ŎƻŘŜ ǘƘǊŜŜ ǘƛƳŜǎ ǿƛǘƘƛƴ мл ǎŜŎƻƴŘǎΣ ǿŜ ŎƻƴǎƛŘŜǊ ǘƘŀǘ ŘŜǾƛŎŜ

ōǊƻƪŜƴΣ ŀƴŘ ŀŎǘƛƻƴ ǎƘƻǳƭŘ ōŜ ǘŀƪŜƴέ όǘƘŀǘ ŀƭǎƻ ƳŜŀƴǎ ǘƘŀǘ ǿŜ Řƻ ƴƻǘ ǎǇǊƛƴƎ ƛƴǘƻ ŀction on the first or

even second fault report from a device). Additionally: we only require a single action for a broken device

ς once the action is initiated, we do not have to start an action again for that same device ς unless of

course it is broken again at a much later point in time.

This first step with Stream Explorer uses a CSV file as the source for events ς because it is convenient

during development, not because it is a realistic scenario for a production deployment. Normally, a live

stream such as a JMS destination or an HTTP channel would be used. Note that the Stream Explorer

implementation would be exactly the same for these other stream types. Stream Explorer processes the

device signals. For signals that satisfy the requirements of a broken device, the information is enriched

from a database with device details ς such as the physical location of the device

Resources: this blog article provides an overview of this device monitoring example and this YouTube

video shows what it looks like.

With Stream Explorer - everything starts from a Stream - a source of events or messages such as a JMS
Queue or Topic, the SOA Suite Event Delivery Network, an HTTP channel or a CSV file such as in this case.
Through one or more Explorations - that each can do filtering, aggregation, enrichment and pattern
matching - finally conclusions can be published to a target. Targets can be JMS destinations, HTTP
channels, a CSV file and the Event Delivery Network of SOA Suite.

In a number of steps, we will go from the CSV file with device signals to an output file that holds all
broken devices. In later practices we will not just send output to a file but to live channels such as JMS,
EDN and REST service targets.

The first step will be an exploration that filters the non-ok signals from the stream:

The second step will find failing devices by counting the number of non-ok signals in a 10 second period
and filtering on any device with a count greater than or equal to 3:

https://technology.amis.nl/2015/04/12/demonstration-of-oracle-stream-explorer-for-live-device-monitoring-collect-filter-aggregate-pattern-match-enrich-and-publish
https://youtu.be/RQjC9ZpEnBI
https://youtu.be/RQjC9ZpEnBI
file:///C:/Users/lucas_j/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles3FD46F3/image37.png

Next, to prevent any failing device from being reported more than once (in a certain period of time) we
perform deduplication, using one of the special patterns shipped out of the box in Stream Explorer:

The remaining messages report a unique failing device and we need to enrich those messages with
details about the device location, taken from a Reference defined for a database table:

The enriched messages are routed to a target ς in this case a simple csv file.

Open Stream Explorer (http://localhost:9002/sx) and log in (wlevs/weblogic1):

This welcome page greets you:

Open the Catalog with the button in the upper right hand corner.

DeviceSignals Stream and NonOkSignals Exploration

Create a new item of type Stream. Set the Source Type to CSV.

Press Next. Select the CSV file - device_signals.csv located in the folder StreamExplorer_Handson under
the home [folder] of the oracle user (/u01/app/oracle/StreamExplorer_Handson):

You may want to briefly inspect this file:

Back in the wizard, refine the Data Shape definition and give it a name (DeviceSignal):

