
(v1.4)
Toon Koppelaars, Netherlands

1

•  Oracle technology since 1987

•  Twitter: @ToonKoppelaars
•  Blogs

•  Thehelsinkideclaration.blogspot.com
•  Harmfultriggers.blogspot.com

2

DBA Developer

Me

•  SQL Plan Management (aka SPM)
•  This will be a tutorial

•  Not a ‘deep dive’ or ‘hacking session’

•  But will show interesting oddities

3

•  SPM:
•  What is it and why would you want to use it?
•  How does it work?

•  Baseline repository
•  Selection, evolution, capture

•  Researching common questions on SPM

4

Explain it

Demo it

Break it

•  Plan stability
•  SPM is mechanism to provide sql execution plan stability

•  Like stored outlines, but more sophisticated
•  [Note: outlines have been deprecated in 11.1]
•  [Note: outlines (still) have precedence over SPM]
•  [Note: outline technology is used under-the-covers by SPM]

5

“Allows execution plans for SQL to be stored so that plan remains
 consistent throughout schema changes, database reorganizations,
 and data volume changes.”

SPM this is an EE feature, i.e. does not require tuning pack

•  Why would you want this?
•  SQL execution plan depends on many things

•  If these change, plan can change
•  Couple of use-cases:

1.  New/patched database (ie. optimizer) version
2.  Changes to optimizer statistics can break good SQL
3.  Other changes:

•  System statistics and system settings
•  Optimizer related changes in parameter file
•  Schema and metadata definitions
•  SQL profile creation
•  Adaptive cursor sharing, cardinality feedback, ...

6

•  In summary:
1.  For every SQL statement, repository of (accepted) execution plans is

held in:
•  DBA_SQL_PLAN_BASELINES

2.  On hard parse:
•  Repository is searched for that execution plan
•  If found or repository is empty, then that plan is used
•  If not found and other accepted plans exist, then one of these accepted

plans is used instead

7

•  Feature controlled by init.ora parameter
•  Optimizer_use_sql_plan_baselines = true/false
•  Alter system + session modifiable

•  Management via supplied package DBMS_SPM

8

•  If plX = plA1 then use it
•  else force use of plA1

è Always use plA1…

 9

DBA_SQL_PLAN_BASELINES

 SQL plan acc
 sql1 plA1 Y
 sql2 plB1 Y
 sql3 plC1 Y

Parse of
sql1

Exec. Plan
plX

•  If plX in (plA1,plA2,plA3)
then use plX

•  else choose one from plA1,
plA2, plA3

10

DBA_SQL_PLAN_BASELINES

 SQL plan acc
 sql1 plA1 Y
 sql1 plA2 Y
 sql1 plA3 Y
 sql2 plB1 Y
 sql3 plC1 Y

Parse of
sql1

Exec. Plan
plX

How “choose” is done, not well
documented. Assumption: 1) same

optimizer env, 2) least cost

•  Three concepts
•  SQL plan baseline capture
•  SQL plan baseline selection
•  SQL plan baseline evolution

11

•  Four ways to load execution plans into repository
1.  Capture all hard parses in sessions

•  Optimizer_capture_sql_plan_baselines = true/
false

2.  Pre-deliver/import from known set
•  DBMS_SPM.Unpack_Stgtab_Baseline

3.  Import from SQL Tuning Set (requires Tuning Pack)
•  DBMS_SPM.Load_Plans_From_Sqlset

4.  Pre-load from shared-pool (v$sql_plan)
•  DBMS_SPM.Load_Plans_From_Sql_Cache

(Migrate stored_outlines: DBMS_SPM.Migrate_Stored_Outline)

12

D
ba

_s
ql

_p
la

n_
ba

se
lin

es

•  Capture in sessions works somewhat sophisticated
•  SQL needs to be executed twice in order to be captured
•  To prevent lots of useless plans for SQL with literals
•  SYS.SQLLOG$ keeps log of first executions

•  During capture baseline properties are set:
•  Enabled true/false
•  Accepted true/false
•  Fixed true/false

13

14

DBA_SQL_PLAN_BASELINES

 SQL plan acc ena fixed

Parse of
sql1

Exec. Plan
plA1

-  Sql1 parsed 1st time
- Not yet baselined

- “Marked”: added to sqllog$
- plA1 used

15

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA1

2nd exec
of sql1

- 2nd execution detected
- plA1 now stored as

accepted plan

 SQL plan acc ena fixed

-  Sql1 parsed 1st time
- Not yet baselined

- “Marked”: added to sqllog$
- plA1 used

16

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA1

2nd exec
of sql1

- 2nd execution detected
- plA1 now stored as

accepted plan

 SQL plan acc ena fixed
 sql1 plA1 Y Y N

-  Sql1 parsed 1st time
- Not yet baselined

- “Marked”: added to sqllog$
- plA1 used

17

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA1

2nd exec
of sql1

- 2nd execution detected
- plA1 now stored as

accepted plan

 SQL plan acc ena fixed
 sql1 plA1 Y Y N

•  From now on: future parses of sql1 will use plA1

-  Sql1 parsed 1st time
- Not yet baselined

- “Marked”: added to sqllog$
- plA1 used

18

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA2

- Sql1 parsed
- Already baselined

-  If plA1 è done
-  If other plan:

1)  Add it as non-accepted
2)  Use baseline plan plA1

 SQL plan acc ena fixed
 sql1 plA1 Y Y N

19

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA2

- Sql1 parsed
- Already baselined

-  If plA1 è done
-  If other plan:

1)  Add it as non-accepted
2)  Use baseline plan plA1

 SQL plan acc ena fixed
 sql1 plA1 Y Y N
 sql1 plA2 N Y N

Force
plan plA1

20

DBA_SQL_PLAN_BASELINES
Parse of

sql1

Exec. Plan
plA3

- Sql1 parsed
- Already baselined

- Add A3 as non-accepted
- Use baseline plan plA1

 SQL plan acc ena fixed
 sql1 plA1 Y Y N
 sql1 plA2 N Y N
 sql1 plA3 N Y N

Force
plan plA1

•  Evolution = find out if not yet accepted plans can be turned into
accepted plans

•  How?
•  By executing them and comparing performance with already accepted

plans in the baseline
•  DBMS_SPM.Evolve_Sql_Plan_Baseline

21

Again, not well documented. How is
comparison done in case of multiple
already accepted plans available?

•  DBMS_SPM.Evolve_Sql_Plan_Baseline
•  Options:

•  Run Evolve and accept if performance is better
•  Run Evolve and report only (do not accept)
•  Run Evolve and accept without testing performance

Will show Evolve run later on…

22

•  Fixed = true changes selection and capture process
•  You can set this manually
•  If exists a fixed & enabled plan for the SQL
1.  Auto-capture will not add new

not-accepted plans for this SQL
2.  Selection will choose

fixed/enabled plan for this SQL
•  Again can be multiple plans…

23

DBA_SQL_PLAN_BASELINES

 SQL plan acc ena fixed
 sql1 plA1 Y Y N
 sql1 plA2 Y Y Y
 sql1 plA3 Y Y N

Not well documented. How is
selection performed in this case?

•  Enabled = false changes selection and evolution process
•  You can set this manually
•  Disabled plans not considered for
1.  Selection
2.  Evolution

24

DBA_SQL_PLAN_BASELINES

 SQL plan acc ena fixed
 sql1 plA1 Y Y N
 sql1 plA2 Y Y N
 sql1 plA3 Y N N

•  Repository storage in SYSAUX
•  Two additional (not init.ora) parameters:

•  Space_budget_percent = 30
•  Plan_retention_weeks = 53

•  To monitor storage usage in SYSAUX tablespace
•  To purge baseline plans not used x weeks
•  Set via DBMS_SPM.Configure
•  Query via DBA_SQL_MANAGEMENT_CONFIG

25

26

1.  What if an accepted baseline plan is “no longer valid”?
2.  How is baseline plan chosen in case multiple plans exist?
3.  How is baseline plan evolution performed?

27

•  What if:
•  Accepted plan relies on index
•  Index no longer exists due to software changes

•  How does SPM deal with this situation?

28

•  A baseline plan does *not* hold execution plan, but
•  set of outline hints

•  When injected in sql-text, are supposed to produce actual execution plan
•  plan-hash-id

•  Of plan supposed to be produced by outline hints
•  Ie. plan that was produced when this baseline was captured

•  Upon plan selection
•  Hints are applied to reproduce plan
•  This plan is hashed
•  This hash is compared against stored hash
•  If unequal è Plan is discarded

29

30

DBA_SQL_PLAN_BASELINES

 SQL plan acc hsh repro
 sql1 plA1 Y x1 Y

Parse of
sql1

Exec. Plan
plA2

-  This plan relies on
some index

-  Index no longer
exists

-  Hard parse of sql1
now results in new
plan (without the

index)

31

DBA_SQL_PLAN_BASELINES

 SQL plan acc hsh repro
 sql1 plA1 Y x1 Y
 sql1 plA2 N x2 Y

Parse of
sql1

Exec. Plan
plA2

-  As usual, new plan
is added as non-

accepted plan
-  And SPM forces

use of plA1
Exec. Plan

plA1

32

DBA_SQL_PLAN_BASELINES

 SQL plan acc hsh repro
 sql1 plA1 Y x1 N
 sql1 plA2 N x2 Y

Parse of
sql1

Exec. Plan
plA2

-  SPM tries to
reproduce plan

plA1, and fails. This
is detected by

mismatch in hash
-  SPM marks
reproduced = ‘N’

and switches back
to CBO plan

Exec. Plan
plA1

Exec. Plan
plA2

1.  What if an accepted baseline plan is “no longer valid”?
2.  How is baseline plan chosen in case multiple plans exist?
3.  How is baseline plan evolution performed?

33

•  Reminder:
•  If hard parse results in plan X, and X is one of accepted (and reproducable!)

plans, then plan X is obviously used

•  But, what if:
•  Hard parse produces new plan, and
•  Multiple (other) accepted and reproducable plans exist

•  How does SPM choose which plan to use in these cases?
•  Does it take different opt-env into account?
•  [Does it take bind-var values into account?]

34

•  Experiment specification:
•  ALL_ROWS plan
•  FIRST_ROWS_1 plan

35

SQL> desc spm_test
 Name Null? Type
 -------------- -------- -------------
 PK NOT NULL NUMBER
 VC1 NOT NULL VARCHAR2(4)
 VC2 NOT NULL VARCHAR2(4)
 PADDING NOT NULL VARCHAR2(100)

Two indexes: (PK), (VC1)

select pk,vc1
from spm_test
order by vc1;

| Operation | Name |

SELECT STATEMENT	
SORT ORDER BY	
TABLE ACCESS FULL	SPM_TEST

--
| Operation | Name |
--
SELECT STATEMENT	
TABLE ACCESS BY INDEX ROWID	SPM_TEST
INDEX FULL SCAN	SPM_TEST_VC1
--

•  Both plans are available in baseline (accepted)
•  New index I3 on (VC1,PK)
•  Parse will now produce new plan è

•  In both modes (AR/FR1)

•  Hypothesis: we have plan stability, so ...
•  SPM chooses first_rows_1 baseline, when in first_rows_1 mode
•  SPM chooses all_rows baseline, when in all_rows mode

36

| Operation | Name |

| SELECT STATEMENT | |
| INDEX FULL SCAN | SPM_TEST_I3 |

select pk,vc1
from spm_test
order by vc1;

Following test performed on 11.2.0.2 and 11.2.0.3

37

38

Cursor fetches all rows

39

Cursor fetches first row only

40

Query V$SQL

41
Load both plans into the SPM repository

42

43

44

45

46

2nd time required
for it to show up in V

$SQL

47

Baselines after this execution

48

Query V$SQL

•  We introduce a new index è and ALL_ROWS baselined SQL
starts performing worse

•  Hear-say:
•  We re-cost all available accepted plans using optimizer-env stored

against them
•  And then choose one with lowest cost

•  Should be: using the current optimizer-env

49

Broken...

“I will file a
bug for that”

•  Final remark on this experiment:
•  Instability will of course be fixed, once new plan is evolved...

50

1.  What if an accepted baseline plan is “no longer valid”?
2.  How is baseline plan chosen in case multiple plans exist?
3.  How is baseline plan evolution performed?

51

•  Let’s rewind our previous experiment and now use auto-capture
•  Run query in all_rows mode è first accepted baseline created
•  Run query in first_rows_1 mode è second, to be evolved baseline

created
•  Manually evolve it

•  Script demo02.txt
•  See spm1.prf

52

53

54

55

56

Two baselines, first one got accepted, second one to be evolved

57

C1 contains report of evolve proces result

58

59

Evolve proces ran the accepated baseline 10 times

60

And the to-be-accepted was run 6 times
5th run was still better, 6th run nomore

But it fetched till %NOTFOUND here too....

“This is known issue
in fw

from other group”

•  Forced to manually accept the 2nd plan (verify => no)

•  Now if we were to:
•  Introduce the new index plan and try to evolve that too

•  Note: this plan is applicable for both optimizer-modes
•  New plan becomes accepted for the wrong reason

•  Continue in script demo02.txt
•  Spm2.prf

•  Not really fair, as we’re already ‘passed’ something broken

61

•  Other thoughts:
•  What if data is distributed differently at time of evolve?
•  How about baselines for DML (insert/update/delete/merge/mti)

•  Presumably rolled back after 10 evolve executions
•  Better not have triggers with non-transactional side-effects

•  No: only query part of DML is executed on evolve

62

•  SPM puts break on other optimizer features such as cardinality
feedback and adaptive cursor sharing
•  New plans generated by these features will have to wait till the next

evolution

•  Baseline for SQL parsed under schema S1, can be selected for
same SQL parsed under schema S2
•  http://intermediatesql.com/oracle/oracle-11g-sql-plan-management-the-

dark-side-of-spm-part-4/

63

•  Hard parse SQL è produces CBO-plan
•  SQL is hashed
•  CBO-plan is hashed
•  Two hashes are used to search for accepted baseline

•  If found, use it
•  If not found, choose the one with the least cost (?)

•  This can be one parsed under different schema
•  Or one using different optimizer environment
•  Or (possibly, not tested) one having mismatch in some other area

•  See: *_mismatch columns in v$sql_shared_cursor

64

•  OPTIMIZER_MISMATCH
•  OUTLINE_MISMATCH
•  STATS_ROW_MISMATCH
•  LITERAL_MISMATCH
•  FORCE_HARD_PARSE
•  EXPLAIN_PLAN_CURSOR
•  BUFFERED_DML_MISMATCH
•  PDML_ENV_MISMATCH
•  INST_DRTLD_MISMATCH
•  SLAVE_QC_MISMATCH
•  TYPECHECK_MISMATCH
•  AUTH_CHECK_MISMATCH
•  BIND_MISMATCH
•  DESCRIBE_MISMATCH

65

•  LANGUAGE_MISMATCH
•  TRANSLATION_MISMATCH
•  BIND_EQUIV_FAILURE
•  INSUFF_PRIVS
•  INSUFF_PRIVS_REM
•  REMOTE_TRANS_MISMATCH
•  LOGMINER_SESSION_MISMATCH
•  INCOMP_LTRL_MISMATCH
•  OVERLAP_TIME_MISMATCH
•  EDITION_MISMATCH
•  MV_QUERY_GEN_MISMATCH
•  USER_BIND_PEEK_MISMATCH
•  TYPCHK_DEP_MISMATCH
•  NO_TRIGGER_MISMATCH

•  Provided high-level tutorial
•  Still many more details to it: read docs, blogs, google for it

•  Answer some of obvious questions not found in docs
•  Hope to not have scared you away from SPM
•  Issues presented seem to be easily fixable by Oracle
•  And/or may not be applicable in your environment

•  Make you think about this feature

 One last slide on 12c enhancements...

66

•  New evolve auto task: sys_auto_spm_evolve_task
•  Info in dba_advisor_tasks, and via
dbms_spm.report_auto_evolve_task

•  Requires Tuning Pack

•  SPM evolve now works with advisory task infrastructure
•  EM integration, persistent store of evolution reports

•  Next to plan-hash, plan rows now also stored in repository
•  Easier diagnosability in case plan could not be reproduced

67

68

69

toon.koppelaars@oracle.com

70

https://www.surveymonkey.com/s/hotsym2013

Only takes 6 clicks

71

Toon.koppelaars@oracle.com

72

73

SQL> desc dba_sql_plan_baselines
 Name Null? Type
 ----------------------- -------- ----------------
 SIGNATURE NOT NULL NUMBER
 SQL_HANDLE NOT NULL VARCHAR2(30)
 SQL_TEXT NOT NULL CLOB
 PLAN_NAME NOT NULL VARCHAR2(30)
 CREATOR VARCHAR2(30)
 ORIGIN VARCHAR2(14)
 PARSING_SCHEMA_NAME VARCHAR2(30)
 DESCRIPTION VARCHAR2(500)
 VERSION VARCHAR2(64)
 CREATED NOT NULL TIMESTAMP(6)
 LAST_MODIFIED TIMESTAMP(6)
 LAST_EXECUTED TIMESTAMP(6)
 LAST_VERIFIED TIMESTAMP(6)
 ENABLED VARCHAR2(3)
 ACCEPTED VARCHAR2(3)
 FIXED VARCHAR2(3)
 REPRODUCED VARCHAR2(3)
 AUTOPURGE VARCHAR2(3)
 OPTIMIZER_COST NUMBER
 MODULE VARCHAR2(64)
 ACTION VARCHAR2(64)
 EXECUTIONS NUMBER
 ELAPSED_TIME NUMBER
 CPU_TIME NUMBER
 BUFFER_GETS NUMBER
 DISK_READS NUMBER
 DIRECT_WRITES NUMBER
 ROWS_PROCESSED NUMBER
 FETCHES NUMBER
 END_OF_FETCH_COUNT NUMBER

