

> Leerboek

Oracle SQL
The speaker Bt

* Oracle technology since 1987
Me

DBA

#,
THE EXPERT 'S VOICE* IN DATABASE —‘{_"r
S0]

Applied

Mathematics RLJHEWGEN

. o . for Database
Twitter: @ToonKoppelaars Profesaiorals

[J B I O g S Locrm b s st hsory and logic o desgn dainer
ek A

A S S N A p——
procisly about thare designs with other stokeholders.

* Thehelsinkideclaration.blogspot.com
* Harmfultriggers.blogspot.com

Lex de Haan and Toon Koppelaars
Farewns by Fugh Qamwen sng OYE (efe

Today’'s topic

Contents

Explain it

Demo it

Break it

What and Why?

* Plan stability
* SPM is mechanism to provide sgl execution plan stability

* Like stored outlines, but more sophisticated
* [Note: outlines have been deprecated in 11.1]
* [Note: outlines (still) have precedence over SPM]
* [Note: outline technology is used under-the-covers by SPM]

What and Why?

How does it work?

y of (accepted) execution plans is

en that plan is used

plans exist, then one of these accepted

How does it work?

selines = true/false

e DBMS_SPM

Vizualized

Parse of
sql1

Exec. Plan
pIX

* If pIX = plAT1 then use it
* else force use of plAT

=> Always use plATl...

DBA SQL PLAN BASELINES

'soL | plan |ace
sqll [plal [¥ [
sql2 [plBl [¥ [

Tsal3 [plCL [¥ |

More than one plan can exist...

Parse of
sql1

Exec. Plan
pIX

* If pIX in (plAT1,plA2,plA3)
then use plX

* else choose one from plA 1, ~mpm

plA2, plA3

DBA SQL PLAN BASELINES

SoL | plan lacc|
sqll [plal [y [
sall [plaz | ¥ |

“sqll [plas | ¥ |

sql2 [plel [¥ [
sqi3 [plol [v [

documented. Assumption: 1) same
optimizer env, 2) least cost

o

SQL Plan Manageme

Baseline capture

* Four ways to load execution plans into repository
— 1. Capture all hard parses in sessions
* Optimizer capture sql plan baselines
false

- Pre-deliver /import from known set

* DBMS SPM.Unpack Stgtab Baseline
3. Import from SQL Tuning Set (requires Tuning Pack)

* DBMS SPM.Load Plans From Sqglset
. Pre-load from shared-pool (v$sql_plan)
* DBMS SPM.Load Plans From Sql Cache

(V2]
()
£
)
(V2]
O
<
[
S
%
o
)
O
o]
a)

| —
—

(Migrate stored_outlines: DBMS SPM.Migrate Stored Outline)

true/

12

Baseline capture

* Capture in sessions works somewhat sophisticated
* SQL needs to be executed twice in order to be captured

* To prevent lots of useless plans for SQL with literals
* SYS.SQLLOGS keeps log of first executions

* During capture baseline properties are set:
* Enabled true/false
* Accepted true/false

* Fixed true /false

13

Auto-capture

- Sql1 parsed 1st time
Pars|e1 of - Not yet baselined
Sq - “Marked”: added to sqllog$

- plA1 used

Exec. Plan
plA1

DBA SQL PLAN BASELINES

14

Auto-capture

- Sql1 parsed 1st time
- Not yet baselined
- “Marked”: added to sqllog$
- plA1 used

Parse of
sql1

Exec. Plan
plA1

- 2nd execution detected
- plA1 now stored as
2nd exec accepted plan

of sql1

DBA SQL PLAN BASELINES

SQL

plan

accl/ena fixed

15

Auto-capture

- Sql1 parsed 1st time DBA SQL PLAN BASELINES

- Not yet baselined
- “Marked”: added to sqllog$
- plA1 used

Parse of
sql1

Exec. Plan
plA1

SQL plan acc ena |(fixed
sgll plAl | Y Y N

- 2nd execution detected
- plA1 now stored as
2nd exec accepted plan

of sql1

16

Auto-capture

- Sql1 parsed 1st time DBA SQL PLAN BASELINES
Parse of Not vet baselined
sql1 - NOt yet baseline SQL plan | acc|ena |fixed
- “Marked”: added to sqllog$ 17 a1 v v N
- plA1 used S9 P
Exec. Plan
plA1
- 2nd execution detected
- plA1 now stored as
2nd exec accepted plan
of sql1

* From now on: future parses of sql1 will use plA1

17

Auto-capture: introducing more plans...

- Sql1 parsed
sql1 - Already baselined

Exec. Plan
plA2 - If plA1 =» done
- If other plan:

DBA SQL PLAN BASELINES

SQL plan acc ena |(fixed
sgll plAl | Y Y N

1) Add it as non-accepted
2) Use baseline plan plA1

18

Auto-capture: introducing more plans...

- Sql1 parsed
sql1 - Already baselined

Exec. Plan
plA2 - If plA1 =» done
- If other plan:

DBA SQL PLAN BASELINES

SQL plan acc ena |(fixed
sgll plAl | Y Y N
sgll plA2 | N Y N

1) Add it as non-accepted

Force 2) Use baseline plan plA1
plan plA1

19

Auto-capture: introducing more plans...

- Sql1 parsed
sql1 - Already baselined

Exec. Plan

DBA SQL PLAN BASELINES

plan acc ena |(fixed
plAl | Y Y N
plA2 | N Y N
plA3| N Y N

- Add A3 as non-accepted
- Use baseline plan plA1

Force
plan plA1

20

Baseline evolution

* Evolution = find out if not yet accepted plans can be turned into
accepted plans

° How?

* By executing them and comparing performance with already accepted
plans in the baseline

* DBMS SPM.Evolve Sql Plan Baseline

comparison done in case of multiple

[Again, not well documented. How is
already accepted plans available?

21

Baseline evolution

an_Baseline

is better

ept)
performance

Baseline selection

* Fixed = true changes selection and capture process
* You can set this manually

* If exists a fixed & enabled plan for the SQL
1. Auto-capture will not add new DBA SQL PLAN BASELINES

not-accepted plans for this SQL m

2. Selection will choose sgll
fixed /enabled plan for this SQL sqgll
Again can be multiple plans...

I
I

Not well documented. How is
selection performed in this case?

Baseline selection

* Enabled = false changes selection and evolution process

* You can set this manually
* Disabled plans not considered for
1. Selection

2. Evolution

DBA SQL PLAN BASELINES

'SoL | plan | acc|ena fixed
sql1
sqll

"sqll [plA3| Y [N | W

SPM specific configuration

* Repository storage in SYSAUX

* Two additional (not init.ora) parameters:
* Space budget percent = 30
* Plan retention weeks = 53

* To monitor storage usage in SYSAUX tablespace
* To purge baseline plans not used x weeks

Set via DBMS SPM.Configure

* Query via DBA SQL MANAGEMENT CONFIG

25

Any questions sofar?

Popular questions

an is “no longer valid”?

se multiple plans exist?

formed?

Q1: Baseline invalidation

Q1: Baseline invalidation

* A baseline plan does *not* hold execution plan, but
* set of outline hints
* When injected in sqgl-text, are supposed to produce actual execution plan

* plan-hash-id

* Of plan supposed to be produced by outline hints
le. plan that was produced when this baseline was captured
* Upon plan selection
* Hints are applied to reproduce plan
* This plan is hashed
* This hash is compared against stored hash
* If unequal = Plan is discarded

29

Q1: Baseline invalidation
Parse of
sql1

Exec. Plan
plA2 - Hard parse of sql1

now results in new
plan (without the
index)

- This plan relies on
some index DBA SQL PLAN BASELINES

- Index no longer
exists

SQL plan acc hsh |repro
sqll #plAl Y x1l Y

30

Q1: Baseline invalidation

Parse of

sql1 DBA SQL PLAN BASELINES

- As usual, new plan SQL plan acc hsh |repro
sqll #plAl Y x1l Y

sqll plA2 N x2 Y

use of plA1

Exec. Plan
plA1

£ PI is added as non-
accepted plan
p - And SPM forces

31

Q1: Baseline invalidation

Parse of

DBA SQL PLAN BASELINES

sql1

- SPM tries to SQL plan acc| hsh |repro
reproduce plan sqll |plAl Y x1l| N
plA1, and fails. This sqll | plA2 N x2 Y

Exec. Plan

A2
. is detected by

mismatch in hash
- SPM marks
reproduced = ‘N’
and switches back
to CBO plan

Exec. Plan
plA1

Exec. Plan

pIA2

32

Popular questions

an is “no longer valid”?

se multiple plans exist?

formed?

Q2: Baseline selection

* Reminder:

* If hard parse results in plan X, and X is one of accepted (and reproducable!)
plans, then plan X is obviously used

* But, what if:
* Hard parse produces new plan, and
* Multiple (other) accepted and reproducable plans exist

* How does SPM choose which plan to use in these cases?
* Does it take different opt-env into account?

* [Does it take bind-var values into account?]

34

Q2: Baseline selection

* Experiment specification:
* ALL_ROWS plan
* FIRST_ROWS_1 plan

| SELECT STATEMENT | |
| SORT ORDER BY [|
|

| SELECT STATEMENT [[
| TABLE ACCESS BY INDEX ROWID| SPM TEST |
| INDEX FULL SCAN | SPM_TEST VC1 |

Q2: Baseline selection

Both plans are available in baseline (accepted)
New index I3 on (VC1,PK) .

9 | Operation | Name |

Parse will now produce new plan

| SELECT STATEMENT | |
* In both modes (AR/FR1) | INDEX FULL SCAN | SPM TEST I3 |

Hypothesis: we have plan stability, so ...
* SPM chooses first_rows_1 baseline, when in first_rows_1 mode

* SPM chooses all_rows baseline, when in all_rows mode

[Folloving fest performed on 11202 and 11.20.3 | 2

Q2: queline Se|eCfi0n (script: demoO1.txt)

SQL> alter system flush shared_pool;
System altered.

SQL> delete from sys.sqllog$;

0O rows deleted.

SQL> show parameter basel
More. ..

TYPE VALUE

optimizer_capture_sql_plan_baselines bool FALSE
ean

optimizer_use_sql_plan_baselines bool TRUE
ean

SQL >

Rem

Rem Load two child-cursors into the shared_pool for our query.
Rem

alter session set optimizer_mode=all_rows;

begin

for r in (select pk,vcl from spm_test order by vcl)
oop

null;

end loop;

end;

/

Cursor fetches all rows

alter session set optimizer_mode=first_rows_1;

declare
cursor cl is select pk,vcl from spm_test order by vcl;
rl cl%rowtype;
begin
open cl;
fetch cl into ril;
close cl;
end;

/

Cursor fetches first row only

39

CHILD_NUMBER OPTIMIZER_ EXECUTIONS

/5p2w38cxy3n/ 0 ALL_ROWS
1 100000
SELECT PK,VCl FROM SPM_TEST ORDER BY VC1

75p2w38cxy3n’/ 1 FIRST_ROWS
0 1
SELECT PK,VCl FROM SPM_TEST ORDER BY VC1

2 rows selected.

Query V$SQL

FETCHES

2229789831

1
3972789292

SQL> variable num_loaded number;

SQL> exec :num_loaded := DBMS_SPM.Load_Plans_From_Cursor_Cache -

> (sql_id=>"75p2w38cxy3n/ ' ,plan_hash_value=>2229789831,fixed=>"NO",enabled=>"YES');
PL/SQL procedure successfully completed.

SQL> print num_loaded
More. ..

NUM_LOADED

SQL> exec :num_loaded := DBMS_SPM.Load_Plans_From_Cursor_Cache(-
> sql_id=>"75p2w38cxy3n7 "' ,plan_hash_value=>3972789292,fixed=>"NO",enabled=>"YES');

PL/SQL procedure successfully completed.

SQL> print num_loaded
More. ..

NUM_LOADED

Load both plans into the SPM repository

.
select sql_handle, sql_text, plan_name, enabled, accepted,parsing_s
,optimizer_cost,fetches,end_of_fetch_count,rows_processed
from dba_sql_plan_baselines
4* order by sql_handle,plan_name
SQL> /
More. ..

SQL_HANDLE SQL_TEXT

| END_OF_FETCH_COUNT ROWS_PROCESSED

SQL_481455a48abbbf6d SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk58rgvd0eaebc72 YES YES SPM1 3

SQL_481455a48abbbfbd SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk56rgvdd6d8fbggoggs YES SPM1 792 1001
1 1

2 rows selected.

SQL>

SQL> alter session set optimizer_mode=all_rows;

Session altered.

SQL> explain plan for select pk,vcl from spm_test order by vcl;
Explained.

SQL> @vp
More. ..

PLAN_TABLE_OUTPUT
Plan hash value: 2229789831

SELECT STATEMENT 878K | 792 (1) |
SORT ORDER BY 878K| 1976K| 792 (1) |
TABLE ACCESS FULL| SPM_TEST | 100K | (L

- SQL plan baseline "SQL_PLAN_4h52pnk56rgvdd6d8fb93" used for this statement

13 rows selected.

SQL> alter session set optimizer_mode=first_rows_1;
Session altered.

SQL> explain plan for select pk,vcl from spm_test order by vcl;

Explained.

SQL> @vp
More. ..

PLAN_TABLE_OUTPUT
Plan hash value: 3972789292

SELECT STATEMENT
TABLE ACCESS BY INDEX ROWID| SPM_TEST
INDEX FULL SCAN | SPM_TEST_VC1

- SQL plan baseline "SQL_PLAN_4h52pnk56rgvdOeaebc/72" used for this statement

13 rows selected.

Rem

Rem Now introduce a new index.

Rem

create unique index spm_test_i3 on spm_test(vcl,pk);

begin

| dbms_stats.gather_table_stats(
ownname => USER |,
tabname => 'SPM_TEST' |,
estimate_percent => 100 ,
cascade => true);

end;

/

SQL> alter system flush shared_pool;
System altered.

SQL> delete from sys.sqllog$;

0 rows deleted.

SQL> alter session set optimizer_mode=all_rows;
Session altered.

SQL> begin

for r in (select pk,vcl from spm_test order by vcl)
oop

null;

end loop;

end;

10 /
2nd time required

PL/SQL procedure successfully completed. for it to show up in V
saLs / $sal

PL/SQL procedure successfully completed.

SQL_HANDLE SQL_TEXT

SQL_481455a48abbbfb6d SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk58rgvd0eaebc72 YES YES SPM1 3

SQL_481455a48abbbfbd SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk58rgvdbce7d0d6 VES NO SPM1 264

SQL_481455a48abbbfbd SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk5?rgvdd6d8f?380555 YES SPM1 792

3 rows selected.

Baselines after this execution

1001

CHILD_NUMBER OPTIMIZER_ EXECUTIONS

75p2w38cxy3n/ 2 FIRST_ROWS
1 100000 101206

SELECT PK,VC1l FROM SPM_TEST ORDER BY VCI
SQL_PLAN_4h52pnk56rgvdOeaebc/?2 3

1 row selected.

Query V$SQL

FETCHES

3972789292

Q2: Baseline selection

SQL Plan Management ensures that runtime performance never

degrades due to the change of an_execution plan. Broken...
“I will file a
* We introduce a new indexBgigferthat™ ROWS baselined SQL
starts performing we
o
* Hear-say: -

* We re-cost all available accepted plans using optimizer-env stored
against them

* And then choose one with lowest cost

* Should be: using the current optimizer-env

49

Q2: Baseline selection

ew plan is evolved...

Popular questions

an is “no longer valid”?

se multiple plans exist?

formed?

Q3: How is evolution performed?

* Let’s rewind our previous experiment and now use auto-capture
* Run query in all_rows mode = first accepted baseline created

* Run query in first_rows_1 mode =2 second, to be evolved baseline
created

* Manually evolve it

* Script demo02.txt
* See spml.prf

52

SQL> drop index spm_test_i3;
Index dropped.

SQL> declare
pl_num number;
begin
for r in (select sql_handle, plan_name
from dba_sql_plan_baselines)
Toop

pl_num := dbms_spm.drop_sql_plan_baseline(r.sql_handle,r.plan_name);

end loop;

end;

IPL/SQL procedure successfully completed.
SQL> alter system flush shared_pool;

System altered.

SQL> delete from sys.sqllog$;

0 rows deleted.

SQL>

Rem

Rem Load two child-cursors into the shared_pool for our query.
Rem

alter session set optimizer_mode=all_rows;

begin

for r in (select pk,vcl from spm_test order by vcl)
Toop

null;

end loop;

for r in (select pk,vcl from spm_test order by vcl)
Toop

null;

end loop;

end;

alter session set optimizer_mode=first_rows_1;

declare
cursor cl is select pk,vcl from spm_test order by vcl;
rl cl%rowtype;
begin
open cl;
fetch ¢l into rl;
close cl;

open cl;
fetch cl into rl;
close cl;

end;

/

SQL_HANDLE SQL_TEXT

SQL_481455a48abbbfbd SELECT PK,VCl FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk58rgvd0eaebc72 YES NO sPm1 3

0

SQL_481455a48abbbfb6d SELECT PK,VC1l FROM SPM_TEST ORDER BY VC1
SQL_PLAN_4h52pnk58rgvdd6d8fb93 Ygs YES SPM1 792

2 rows selected.

Two baselines, first one got accepted, second one to be evolved

56

Rem

Rem Evolve not accepted plans for our SQL.

Rem

set long 10000

variable cl clob;

begin

:cl

:= DBMS_SPM.evolve_sql_plan_baseline
(sql_handle => 'sQL_481455a48a6bbbfb6d’
,verify => 'YES'
,commit => 'YES');

C1 contains report of evolve proces result

57

Evolve SQL Plan Baseline Report

SQL_HANDLE
PLAN_NAME
TIME_LIMIT
VERIFY
COMMIT

SQL_481455a48abbbfod

DBMS_SPM.AUTO_LIMIT
YES
YES

Plan: SQL_PLAN_4h52pnk56rgvdOeaebc’?2

Plan was verified: Time used 2.28 seconds.
Plan failed performance criterion: 2.33 times worse than baseline plan.

Baseline Plan Test Plan Stats Ratio

Execution Status: COMPLETE COMPLETE
Rows Processed: 100000 100000
Elapsed Time(ms): 119.622 288.383
CPU Time(ms): 112.411 261.96
Buffer Gets: 1480 100209
Physical Read Requests:

Physical write Requests:

Physical Read Bytes:

Physical write Bytes:

Executions:

Number of plans verified: 1
Number of plans accepted: 0O

¥ ¥ Y Ve Yo Ve Ve Yo Yo Yo Yo Yo e Yo Yo e e Y Y Y Y Yo Yo Yo Yo Yo Yo Yo Yo Yo e e e v e Y Y e e Yo Yo Yo Yo Yo Yo Yo de Yo e e e e e e e e Yo de Yo de Yo de de de Yo de e e 3 e e e e e e de de Ye e e

SQL ID: d56x858gwqp8v Plan Hash: 3604544403

SELECT PK,VCl
FROM
SPM_TEST ORDER BY VC1

elapsed

Execute
Fetch

1000000

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS

Parsing user id: 355 (recursive depth: 1)
¥ ¥ ¥ Yo Yo Yo Yo Y Y Yo Yo Yo Yo Y ¥ Yo Yo Yo Yo Y Y Yo Yo Yo Yo Y Y Yo Yo Yo Yo Y Y Yo Yo Yo Yo Y Y Yo e Yo Yo Y Y e Yo Yo Yo Y Y e Yo Yo Yo Y Y Y Yo Yo Yo Y Y e Yo Yo Yo Y Y e e Yo Yo Y Y e e Yo e

Evolve proces ran the accepated baseline 10 times

¥ Yo e Ve Yo Yo Yo Yo Yo Yo e Yo Yo Yo Yo Y Yo e Yo Yo Yo Yo Yo Y e e Yo Yo Yo Yo Yo Y e e Yo Yo Yo Yo Yo e e Yo Yo Yo Yo Yo Y e e Yo Yo Yo Yo Yo e e Yo Yo Yo Yo Yo Y e e Ye Yo Yo Yo Yo e e e e Yo e e e e e e

SQL ID: d56x858gwqp8v Plan Hash: 246332530

SELECT PK,VC1l
FROM
SPM_TEST ORDER BY VC1

“This is known issue
in fw

b01254
601254

Misses in library cache dur
Optimizer mode: FIRST_ROWS

Parsing user id: 350 (recursive depth: 1)
¥ Yo ¥ Yo Yo ¥ Yo Yo Y e e Ve e e Y e 3 Y e 3 e Y % Y Y % Y Y 3 Y v 3 Y 3 3 Y 3 3 Y 3 3 Y 3 3 Y 3% 3 Y 3% Y 3 3 Y 3 3 Y 3 3 Y 3 3 Y 3 3 Y 3% 3 Y % 3 Y % Y 3 3 Y 3k e vk

And the to-be-accepted was run 6 times
5th run was still better, 6th run nomore

But it fetched till Y%oNOTFOUND here too....

Q3: How is evolution performed?

(verify => no)

ssed’ something broken

Q3: How is evolution performed?

* Other thoughts:
* What if data is distributed differently at time of evolve?
* How about baselines for DML (insert/update /delete /merge /mti)
* Presumably rolled back after 10 evolve executions

* Better not have triggers with non-transactional side-effects

* No: only query part of DML is executed on evolve

62

Other nice-to-knows

er features such as cardinality

Recap: SPM version 1.0

Hard parse SQL = produces CBO-plan

SQL is hashed

CBO-plan is hashed

Two hashes are used to search for accepted baseline

* If found, use it
* If not found, choose the one with the least cost (2)

* This can be one parsed under different schema
* Or one using different optimizer environment
* Or (possibly, not tested) one having mismatch in some other area

See: *_mismatch columns in v$sql_shared_cursor

Possible mismatches?

-)

=)

22

OPTIMIZER_MISMATCH -
OUTLINE_MISMATCH
STATS._ ROW_MISMATCH
LITERAL_MISMATCH
FORCE_HARD_PARSE
EXPLAIN_PLAN_CURSOR
BUFFERED_DML_MISMATCH
PDML_ENV_MISMATCH
INST_DRTLD_MISMATCH
SLAVE_QC_MISMATCH
TYPECHECK_MISMATCH
AUTH_CHECK_MISMATCH
BIND_MISMATCH
DESCRIBE_MISMATCH

3

LANGUAGE_MISMATCH
TRANSLATION_MISMATCH
BIND_EQUIV_FAILURE
INSUFF_PRIVS
INSUFF_PRIVS_REM
REMOTE_TRANS_MISMATCH
LOGMINER_SESSION_MISMATCH
INCOMP_LTRL_MISMATCH
OVERLAP_TIME_MISMATCH
EDITION_MISMATCH
MV_QUERY_GEN_MISMATCH
USER_BIND_PEEK_MISMATCH
TYPCHK_DEP_MISMATCH
NO_TRIGGER_MISMATCH

65

Wrapping up

* Provided high-level tutorial
¢ Still many more details to it: read docs, blogs, google for it

* Answer some of obvious questions not found in docs
* Hope to not have scared you away from SPM
* Issues presented seem to be easily fixable by Oracle
* And/or may not be applicable in your environment

* Make you think about this feature

One last slide on 12c enhancements...

66

Wrapping up: 12c enhancements

* New evolve auto task: sys auto spm evolve task

* Info indba advisor tasks, and via
dbms spm.report auto evolve task

* Requires Tuning Pack

* SPM evolve now works with advisory task infrastructure

* EM integration, persistent store of evolution reports

* Next to plan-hash, plan rows now also stored in repository

* Easier diagnosability in case plan could not be reproduced

67

Q& A

68

Thank you for your attention

hotsos

‘SYMPOSIUM MARCFI 3-7

Only takes 6 clicks

70

SQL> desc dba_sql plan baselines

Name

SIGNATURE
SQL_HANDLE
SQL_TEXT

PLAN NAME
CREATOR
ORIGIN
PARSING_ SCHEMA NAME
DESCRIPTION
VERSION
CREATED

LAST MODIFIED
LAST_ EXECUTED
LAST VERIFIED
ENABLED
ACCEPTED

FIXED
REPRODUCED
AUTOPURGE
OPTIMIZER COST
MODULE

ACTION
EXECUTIONS
ELAPSED_TIME
CPU_TIME
BUFFER_GETS
DISK_READS
DIRECT WRITES
ROWS_PROCESSED
FETCHES
END_OF_FETCH_COUNT

Null?

NOT NULL
NOT NULL
NOT NULL
NOT NULL

NOT NULL

NUMBER
VARCHAR2 (30)
CLOB
VARCHAR2 (30)
VARCHAR2 (30)
VARCHAR2 (14)
VARCHAR2 (30)
VARCHAR2 (500)
VARCHAR2 (64)
TIMESTAMP (6)
TIMESTAMP (6)
TIMESTAMP (6)
TIMESTAMP (6)
VARCHAR? (3)
VARCHAR? (3)
VARCHAR? (3)
VARCHAR2 (3)
VARCHAR2 (3)
NUMBER
VARCHAR? (64)
VARCHAR2 (64)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

73

