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Who am I?
• Frits Hoogland

– Working with Oracle products since 1996

• Blog: http://fritshoogland.wordpress.com
• Twitter: @fritshoogland
• Email: fhoogland@vxcompany.com
• Oracle ACE Director
• OakTable Member
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Agenda
• Full scan implementation 

– Version 10 and earlier versus version 11 and later

• Direct path read slots

• ‘autotune’ / adaptive direct path reads
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What is this presentation about?
• Multiblock reads can behave different after 10.2
• This could lead to different behavior of applications using 

the database.

• I assume the audience to have basic understanding 
about:
– Oracle execution plans 
– Oracle SQL/10046 extended traces
– General execution behavior of the RDBMS engine
– C language in general
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Row source operations
• Multiblock reads are an optimised method to read 

database blocks from disk for a database process.

– Mainly used for the: 
‣ ‘TABLE ACCESS FULL’
‣ ‘FAST FULL INDEX SCAN’ 
‣ ‘BITMAP FULL SCAN’

– rowsource operations.
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Row source operations
• For much of other segment access rowsource actions, 

like:
– ‘INDEX UNIQUE SCAN’
– ‘INDEX RANGE SCAN’
– ‘INDEX FULL SCAN’
– ‘TABLE ACCESS BY INDEX ROWID’

• single block reads are mostly used.

• The order in which individual blocks are read is 
important. 
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db file multiblock read count
• Multiblock reads are done up to 

DB_FILE_MULTIBLOCK_READ_COUNT blocks.
– If MBRC is unset, default is ‘maximum IO size that 

can be efficiently performed’.
– Most operating systems allow a single IO operation 

up to 1 MB.
– “Autotuned” (set to 0) seems to calculate its value by 

using the parameters ‘sessions’ and 
‘db_cache_size’. 

– I prefer to set it manually. 
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My test environment
• Mac OSX Mountain Lion, VM Ware fusion

– VM: OL6u3 x64
‣Database version 10.2.0.1 and 11.2.0.3
‣ ASM GI 11.2.0.3

– Sample tables:
‣ T1 - 21504 blocks - 176M - 1’000’000 rows

› PK index - 2304 blocks / 19M

‣ T2 - 21504 blocks - 176M - 1’000’000 rows
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First test
• 10.2.0.1 instance:

– sga_target = 600M
– Effective buffercache size = 450M
– Freshly started
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First test
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TS@v10201 > select /*+ index(t t1_pk_ix) */ count(id), sum(scattered) from t1 t;

 COUNT(ID) SUM(SCATTERED)
---------- --------------
   1000000     9999500000

----------------------------------------------------------------------------------
| Id  | Operation                     | Name     |  Rows  |  Bytes | Cost (%CPU) |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |          |     1  |     5  | 23234   (1) |
|   1 |  SORT AGGREGATE               |          |     1  |     5  |             |
|   2 |   TABLE ACCESS BY INDEX ROWID | T1       |  1000K |  4884K | 23234   (1) |
|   3 |    INDEX FULL SCAN            | T1_PK_IX |  1000K |        |  2253   (2) |
----------------------------------------------------------------------------------
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First test
• How would you expect Oracle 10.2.0.1 to execute this?

– In other words: 
– What would be the result of a SQL trace with waits? *

* If all blocks need to be read from disk (ie. not cached)
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First test
• My guess would be:

– Index root bock (1 block)
– None, one or more branch blocks (1 block)
– Index leaf block, fetch values (1 block)
– Table block via index rowid, fetch value(s) (1/1+ block)
– Index values, block value(s), etc.
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First test
• That should look like something like this:

WAIT #8: nam='db file sequential read' ela= 326 file#=5 block#=43028 blocks=1
WAIT #8: nam='db file sequential read' ela= 197 file#=5 block#=43719 blocks=1
WAIT #8: nam='db file sequential read' ela= 227 file#=5 block#=43029 blocks=1
WAIT #8: nam='db file sequential read' ela= 125 file#=5 block#=20 blocks=1
WAIT #8: nam='db file sequential read' ela= 109 file#=5 block#=21 blocks=1
WAIT #8: nam='db file sequential read' ela= 242 file#=5 block#=22 blocks=1
WAIT #8: nam='db file sequential read' ela= 98 file#=5 block#=23 blocks=1
WAIT #8: nam='db file sequential read' ela= 76 file#=5 block#=24 blocks=1
WAIT #8: nam='db file sequential read' ela= 77 file#=5 block#=25 blocks=1
WAIT #8: nam='db file sequential read' ela= 77 file#=5 block#=26 blocks=1
WAIT #8: nam='db file sequential read' ela= 105 file#=5 block#=27 blocks=1
WAIT #8: nam='db file sequential read' ela= 82 file#=5 block#=28 blocks=1
WAIT #8: nam='db file sequential read' ela= 71 file#=5 block#=29 blocks=1
WAIT #8: nam='db file sequential read' ela= 93 file#=5 block#=43030 blocks=1
...
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First test
• Instead, I get:

WAIT #4: nam='db file scattered read' ela= 361 file#=5 block#=43025 blocks=8
WAIT #4: nam='db file scattered read' ela= 220 file#=5 block#=43713 blocks=8
WAIT #4: nam='db file scattered read' ela= 205 file#=5 block#=17 blocks=8
WAIT #4: nam='db file scattered read' ela= 219 file#=5 block#=25 blocks=8
WAIT #4: nam='db file scattered read' ela= 192 file#=5 block#=33 blocks=8
WAIT #4: nam='db file scattered read' ela= 141 file#=5 block#=41 blocks=8
WAIT #4: nam='db file scattered read' ela= 123 file#=5 block#=49 blocks=8
WAIT #4: nam='db file scattered read' ela= 190 file#=5 block#=57 blocks=8
WAIT #4: nam='db file scattered read' ela= 231 file#=5 block#=43033 blocks=8
WAIT #4: nam='db file scattered read' ela= 113 file#=5 block#=65 blocks=8
...
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First test
• Sets of 8 blocks are read for rowsources which really 

need a single block.
• Reason: 

– This is an empty cache.
– Oracle reads multiple blocks to get the cache filled.
– ‘cache warming’
‣ Statistic (‘physical reads cache prefetch’)

• Needed to tune the BC down to 50M and pre-warm it 
with another table to get single block reads again (!!)
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db_file_multiblock_read_count
• MBRC is the maximum amount of blocks read in one IO.

• Buffered MBRC cannot cross extent borders.

• Concepts guide on full table scans:  (11.2 version)
– A scan of table data in which the database 

sequentially reads all rows from a table and filters out 
those that do not meet the selection criteria. All data 
blocks under the high water mark are scanned.
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Full scan - Oracle 10.2
• Let’s look at an Oracle 10.2.0.1 database

– SGA_TARGET 600M

– Table TS.T2 size 21504 blks / 176M
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Full scan - Oracle 10.2
TS@v10201 > set autot on exp stat
TS@v10201 > select count(*) from t2;

  COUNT(*)
----------
   1000000

Execution Plan
----------------------------------------------------------
Plan hash value: 3724264953

-------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Cost (%CPU)| Time     |
-------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |     1 |  3674   (1)| 00:00:45 |
|   1 |  SORT AGGREGATE    |      |     1 |            |          |
|   2 |   TABLE ACCESS FULL| T2   |  1007K|  3674   (1)| 00:00:45 |
-------------------------------------------------------------------

18

Friday, February 8, 13



Full scan - Oracle 10.2
Statistics
----------------------------------------------------------
        212  recursive calls
          0  db block gets
      20976  consistent gets
      20942  physical reads
          0  redo size
        515  bytes sent via SQL*Net to client
        469  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          4  sorts (memory)
          0  sorts (disk)
          1  rows processed
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Full scan - Oracle 10.2
SYS@v10201 AS SYSDBA> 
select object_id, object_name, owner from dba_objects where object_name = 'T2';

 OBJECT_ID OBJECT_NAME                                   OWNER
---------- --------------------------------------------- ------------------
     10237 T2                                            TS

SYS@v10201 AS SYSDBA> select * from x$kcboqh where obj# = 10237;

ADDR                 INDX   INST_ID     TS#    OBJ#   NUM_BUF HEADER
---------------- -------- --------- ------- ------- --------- ----------------
FFFFFD7FFD5C6FA8      335         1       5   10237     20942 000000038FBCF840
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Full scan - Oracle 10.2
TS@v10201 > select count(*) from t2;

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      20953  consistent gets
          0  physical reads
          0  redo size
        515  bytes sent via SQL*Net to client
        469  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          1  rows processed
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Full scan - Oracle 11.2
• Now look at an Oracle 11.2.0.3 database

– SGA_TARGET 600M

– Table TS.T2 size 21504 blks / 176M
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Full scan - Oracle 11.2
TS@v11203 > select count(*) from t2;

  COUNT(*)
----------
   1000000

Execution Plan
----------------------------------------------------------
Plan hash value: 3724264953

-------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Cost (%CPU)| Time     |
-------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |     1 |  3672   (1)| 00:00:45 |
|   1 |  SORT AGGREGATE    |      |     1 |            |          |
|   2 |   TABLE ACCESS FULL| T2   |  1000K|  3672   (1)| 00:00:45 |
-------------------------------------------------------------------
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Full scan - Oracle 11.2 
Statistics
----------------------------------------------------------
        217  recursive calls
          0  db block gets
      20970  consistent gets
      20942  physical reads
          0  redo size
        526  bytes sent via SQL*Net to client
        523  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          4  sorts (memory)
          0  sorts (disk)
          1  rows processed
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Full scan - Oracle 11.2 
SYS@v11203 AS SYSDBA> 
select object_id, object_name, owner from dba_objects where object_name = 'T2';

 OBJECT_ID OBJECT_NAME                                            OWNER
---------- ------------------------------------------------------ -------------
     66614 T2                                                     TS

SYS@v11203 AS SYSDBA> select * from x$kcboqh where obj# = 66614;

ADDR                INDX  INST_ID    TS#       OBJ#    NUM_BUF HEADER
---------------- ------- -------- ------ ---------- ---------- ----------------
FFFFFD7FFC541B18      43        1      5      66614          1 000000039043E470
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Full scan - Oracle 11.2
TS@v11203 > select count(*) from t2;

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      20945  consistent gets
      20941  physical reads
          0  redo size
        526  bytes sent via SQL*Net to client
        523  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          1  rows processed
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Full scan 10.2 vs. 11.2
• Why does version 10 caches all the blocks read,
• And version 11 only 1 of them??

• Let’s do an extended SQL trace
– AKA 10046 level 8 trace.
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Full scan 10.2 vs. 11.2
Relevant part of 10046/8 trace file of version 10.2.0.1:
WAIT #1: nam='db file sequential read' ela= 32941 file#=5 block#=19 blocks=1
WAIT #1: nam='db file scattered read' ela= 4003 file#=5 block#=20 blocks=5
WAIT #1: nam='db file scattered read' ela= 6048 file#=5 block#=25 blocks=8
WAIT #1: nam='db file scattered read' ela= 1155 file#=5 block#=34 blocks=7
WAIT #1: nam='db file scattered read' ela= 860 file#=5 block#=41 blocks=8
WAIT #1: nam='db file scattered read' ela= 837 file#=5 block#=50 blocks=7
WAIT #1: nam='db file scattered read' ela= 1009 file#=5 block#=57 blocks=8
WAIT #1: nam='db file scattered read' ela= 890 file#=5 block#=66 blocks=7
WAIT #1: nam='db file scattered read' ela= 837 file#=5 block#=73 blocks=8
WAIT #1: nam='db file scattered read' ela= 10461 file#=5 block#=82 blocks=7
WAIT #1: nam='db file scattered read' ela= 623 file#=5 block#=89 blocks=8
WAIT #1: nam='db file scattered read' ela= 1077 file#=5 block#=98 blocks=7
WAIT #1: nam='db file scattered read' ela= 49146 file#=5 block#=105 blocks=8
WAIT #1: nam='db file scattered read' ela= 719 file#=5 block#=114 blocks=7
WAIT #1: nam='db file scattered read' ela= 1093 file#=5 block#=121 blocks=8
WAIT #1: nam='db file scattered read' ela= 1293 file#=5 block#=130 blocks=7
WAIT #1: nam='db file scattered read' ela= 2103 file#=5 block#=137 blocks=8
WAIT #1: nam='db file scattered read' ela= 42206 file#=5 block#=147 blocks=126
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Full scan 10.2 vs. 11.2
Relevant part of 10046/8 trace file of version 11.2.0.3:
WAIT #140120507194664: nam='db file sequential read' ela= 12607 file#=5 
block#=43394 blocks=1 obj#=14033 tim=1329685383169372
nam='direct path read' ela= 50599 file number=5 first dba=43395 block cnt=13
nam='direct path read' ela= 21483 file number=5 first dba=43425 block cnt=15
nam='direct path read' ela= 10766 file number=5 first dba=43441 block cnt=15
nam='direct path read' ela= 12915 file number=5 first dba=43457 block cnt=15
nam='direct path read' ela= 12583 file number=5 first dba=43473 block cnt=15
nam='direct path read' ela= 11899 file number=5 first dba=43489 block cnt=15
nam='direct path read' ela= 10010 file number=5 first dba=43505 block cnt=15
nam='direct path read' ela= 160237 file number=5 first dba=43522 block cnt=126
nam='direct path read' ela= 25561 file number=5 first dba=43650 block cnt=126
nam='direct path read' ela= 121507 file number=5 first dba=43778 block cnt=126
nam='direct path read' ela= 25253 file number=5 first dba=43906 block cnt=126
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First single block read
• The segment header is read separately

– Single block, read into SGA

• The header block is listed in dba_segments

select owner, segment_name, header_file, header_block 
from dba_segments where segment_name like 'T2';

OWNER	  SEGMENT_NAME 	     HEADER_FILE HEADER_BLOCK
----------    -------------------- ----------- ------------
TS            T2                   5           130
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Full scan 10.2 vs. 11.2
• A full scan uses direct path reads in the v11 case.

– Noticeable by ‘direct path read’ event

– Direct path reads go to PGA
– Which means the blocks read are not cached
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Full scan 10.2 vs. 11.2
• Do all full scans in version 11 always use direct path?

• Direct path reads are considered 
– if #blocks of the segment > 5*_small_table_threshold

• PS: MOS note 787373.1 
• “How does Oracle load data into the buffer cache for 

table scans ?”
• Mentions _small_table_threshold being the limit

– Note INCORRECT!
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Direct path read
Small table threshold of my Oracle 11 instance:
NAME	 	 	 VALUE
-------------------------- --------------------------
_small_table_threshold     245	 	  

This means objects up to 245*5=1225 blocks 
will be read into buffercache / SGA.
Let’s create a table with a size just below 1225 blocks:
TS@v11203 > create table t1_small as select * from t1 where id <= 47000;

TS@v11203 > exec dbms_stats.gather_table_stats(null,‘T1_SMALL’);
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Direct path read

SYS@v11203 AS SYSDBA>
 
select segment_name, blocks, bytes
from dba_segments where segment_name = 'T1_SMALL';

SEGMENT_NAME                           BLOCKS     BYTES
-------------------------------------- ---------- ----------
T1_SMALL                               1024       8388608

SQL@v11203 AS SYSDBA> alter system flush buffer_cache;
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Direct path read
TS@v11203 > set autot trace exp stat
TS@v11203 > select count(*) from t1_small;

Execution Plan
----------------------------------------------------------
Plan hash value: 1277318887

-----------------------------------------------------------------------
| Id  | Operation          | Name     | Rows  | Cost (%CPU)| Time     |
-----------------------------------------------------------------------
|   0 | SELECT STATEMENT   |          |     1 |   176   (1)| 00:00:03 |
|   1 |  SORT AGGREGATE    |          |     1 |            |          |
|   2 |   TABLE ACCESS FULL| T1_SMALL | 47000 |   176   (1)| 00:00:03 |
-----------------------------------------------------------------------
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Direct path read
Statistics
----------------------------------------------------------
	   0  recursive calls
	   0  db block gets
	 983  consistent gets
	 979  physical reads
	   0  redo size
	 527  bytes sent via SQL*Net to client
	 523  bytes received via SQL*Net from client
	   2  SQL*Net roundtrips to/from client
	   0  sorts (memory)
	   0  sorts (disk)
	   1  rows processed
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Direct path read
SYS@v11203 AS SYSDBA> 
select object_id, object_name, owner 
from dba_objects where object_name = 'T1_SMALL';

 OBJECT_ID OBJECT_NAME                                            OWNER
---------- ------------------------------------------------------ -------------
     66729 T1_SMALL                                               TS

SYS@v11203 AS SYSDBA> select * from x$kcboqh where obj# = 66729;

ADDR             INDX   INST_ID TS#    OBJ#    NUM_BUF    HEADER
---------------- ------ ------- ------ ------- ---------- ----------------
FFFFFD7FFC6E1EF0 0      1       5      66729   979        0000000390437840
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Direct path read

Ah, now the full scan is buffered!

Another scan will reuse the cached blocks now:

TS@v11203 > select count(*) from t1_small;

...

Statistics
----------------------------------------------------------
	   0  recursive calls
	   0  db block gets
	 983  consistent gets
	   0  physical reads
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Direct path read

• What type of wait event will be used for a full scan:

– Oracle version 11.2
– If segment is smaller than 5 * _small_table_threshold
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Direct path read

Well, try it:
TS@v11203 > alter session set events ‘10046 trace name context forever, level 8’;
TS@v11203 > select count(*) from t1_small;
...
TS@v11203 > alter session set events ‘10046 trace name context off’;

It shows:
WAIT #140358956326184: nam='db file sequential read' ela= 38476 file#=5 
block#=88706 blocks=1 obj#=14047 tim=1330369985672633
nam='db file scattered read' ela= 116037 file#=5 block#=88707 blocks=5 
nam='db file scattered read' ela= 56675 file#=5 block#=88712 blocks=8 
nam='db file scattered read' ela= 11195 file#=5 block#=88721 blocks=7 
nam='db file scattered read' ela= 132928 file#=5 block#=88728 blocks=8
nam='db file scattered read' ela= 18692 file#=5 block#=88737 blocks=7 
nam='db file scattered read' ela= 87817 file#=5 block#=88744 blocks=8 
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Oracle 11 multiblock IO
• In version 11 of the Oracle database

– Multiblocks reads use both wait events:

‣ db file scattered read
‣ direct path read

– Which are two different codepath’s
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Implementation
• Buffered multiblock reads

– Buffered multiblock reads == ‘db file scattered read’
– Up to version 10 the ONLY option for non-PQ 

multiblock reads
– Starting from version 11, a possible multiblock read 

option
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Buffered multiblock reads
SYS@v10201 AS SYSDBA> select segment_name, extent_id, block_id, blocks, bytes
from dba_extents where segment_name = 'T2' and owner = 'TS' order by extent_id;

SEGMENT_NAME                          EXTENT_ID  BLOCKS    BYTES
------------------------------------- ---------- --------- ----------
T2                                             0         8      65536
...
T2                                            15         8      65536
T2                                            16       128    1048576
...
T2                                            78       128    1048576
T2                                            79      1024    8388608
...
T2                                            91      1024    8388608
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Buffered multiblock reads
Version 10 multiblock reads:
WAIT #2: nam='db file sequential read' ela= 12292 file#=5 block#=19 blocks=1
WAIT #2: nam='db file scattered read' ela= 179162 file#=5 block#=20 blocks=5
WAIT #2: nam='db file scattered read' ela= 47597 file#=5 block#=25 blocks=8
WAIT #2: nam='db file scattered read' ela= 5206 file#=5 block#=34 blocks=7 
WAIT #2: nam='db file scattered read' ela= 94101 file#=5 block#=41 blocks=8 
WAIT #2: nam='db file scattered read' ela= 512 file#=5 block#=50 blocks=7 
WAIT #2: nam='db file scattered read' ela= 87657 file#=5 block#=57 blocks=8 
WAIT #2: nam='db file scattered read' ela= 27488 file#=5 block#=66 blocks=7 
WAIT #2: nam='db file scattered read' ela= 24316 file#=5 block#=73 blocks=8 
WAIT #2: nam='db file scattered read' ela= 55251 file#=5 block#=82 blocks=7 
WAIT #2: nam='db file scattered read' ela= 641 file#=5 block#=89 blocks=8 
WAIT #2: nam='db file scattered read' ela= 455 file#=5 block#=98 blocks=7 
WAIT #2: nam='db file scattered read' ela= 43826 file#=5 block#=105 blocks=8 
WAIT #2: nam='db file scattered read' ela= 32685 file#=5 block#=114 blocks=7 
WAIT #2: nam='db file scattered read' ela= 60212 file#=5 block#=121 blocks=8 
WAIT #2: nam='db file scattered read' ela= 37735 file#=5 block#=130 blocks=7 
WAIT #2: nam='db file scattered read' ela= 59565 file#=5 block#=137 blocks=8 
(ps: edited for clarity)
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17

25

33

41

49

57

65

73

81

89

97

105

113

121

129

137

145

273

401

529

657

785

nam='db file sequential read' ela= 12292 file#=5 block#=19 
blocks=1
nam='db file scattered read' ela= 179162 file#=5 block#=20 
blocks=5
nam='db file scattered read' ela= 47597 file#=5 block#=25 
blocks=8
nam='db file scattered read' ela= 5206 file#=5 block#=34 
blocks=7
nam='db file scattered read' ela= 94101 file#=5 block#=41 
blocks=8
nam='db file scattered read' ela= 512 file#=5 block#=50 
blocks=7
nam='db file scattered read' ela= 87657 file#=5 block#=57 
blocks=8
nam='db file scattered read' ela= 87657 file#=5 block#=147 
blocks=126
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Non buffered multiblock reads
WAIT #140120507194664: nam='db file sequential read' ela= 12607 file#=5 
block#=43394 blocks=1 obj#=14033 tim=1329685383169372

nam='direct path read' ela= 50599 file number=5 first dba=43395 block cnt=13
nam='direct path read' ela= 21483 file number=5 first dba=43425 block cnt=15
nam='direct path read' ela= 10766 file number=5 first dba=43441 block cnt=15
nam='direct path read' ela= 12915 file number=5 first dba=43457 block cnt=15
nam='direct path read' ela= 12583 file number=5 first dba=43473 block cnt=15
nam='direct path read' ela= 11899 file number=5 first dba=43489 block cnt=15
nam='direct path read' ela= 10010 file number=5 first dba=43505 block cnt=15
nam='direct path read' ela= 160237 file number=5 first dba=43522 block cnt=126
nam='direct path read' ela= 25561 file number=5 first dba=43650 block cnt=126
nam='direct path read' ela= 121507 file number=5 first dba=43778 block cnt=126
nam='direct path read' ela= 25253 file number=5 first dba=43906 block cnt=126
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43392

43400

43408

43418

43424

43432

43440

43448

43456

43464

43472

43480

43488

43496

43504

43512

43520

43648

43776

43904

nam='db file sequential read' ela= 12607 file#=5 
block#=43394 blocks=1
nam='direct path read' ela= 50599 file number=5 first 
dba=43395 block cnt=13not in tracefile. more on this later.nam='direct path read' ela= 21483 file number=5 first 
dba=43425 block cnt=15
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ASSM 
• Automatic segment space management

– Tablespace property
– Default since Oracle 10.2

• Uses L 1/2/3 bitmap blocks for space management

• With extent size of
– 8 blocks: 1 BMB as first block of every other extent
– 128 blocks: 2 BMB as first blocks in all extents
– 1024 blocks: 4 BMB as first blocks in all extents
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Multiblock implementation
• Conclusion:

– Buffered reads scan up to:
‣Non data (space admin. bitmap) block
‣ Extent border
‣ Block already in cache (from TOP, didn’t test this)

– Direct path/non buffered reads scan up to:
‣Non data (space admin. bitmap) block
‣ Block already in cache (from TOP, didn’t test this)
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Waits and implementation
• ‘Wait’ or wait event

– Part of the formula: 
‣ Elapsed time = CPU time + Wait time

• Inside the Oracle database it is meant to record the 
time spent in a specific part of the oracle database 
code not running on CPU.

• Let’s look at the implementation of some of the wait 
events for multiblock reads! 
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strace
• Linux tool for tracing (viewing) system calls

– Solaris/AIX: truss, HPUX: tusc.

• Very, very, useful to understand what is happening
• Much people are using it for years
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• STRACE LIES!                   (at least on linux)

Friday, February 8, 13



strace lies
• Strace doesn’t show io_getevents() if:

– timeout struct set to {0,0} (‘zero’)
– does not succeed in reaping min_nr IO’s

• This strace omission is not documented
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strace lies
• This is best seen with system’s IO capability severely 

throttled (1 IOPS)
• See http://fritshoogland.wordpress.com/2012/12/15/

throttling-io-with-linux/

• Cgroups
– Control groups
– Linux feature 
– Fully available with OL6
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strace lies
• Strace output

– Version 11.2.0.3 (reason shown later)
– IO throttled to 1 IOPS
– Full table scan doing count(*) on t2
– With 10046 at level 8
‣ To show where waits are occuring

– Start of FTS, up to first reap of IO
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strace lies
io_submit(139801394388992, 1, {{0x7f260a8b3450, 0, 0, 0, 257}}) = 1

io_submit(139801394388992, 1, {{0x7f260a8b31f8, 0, 0, 0, 257}}) = 1

io_getevents(139801394388992, 1, 128, {{0x7f260a8b3450, 0x7f260a8b3450, 106496, 
0}}, {600, 0}) = 1

write(8, "WAIT #139801362351208: nam='dire"..., 133) = 133

* edited for clarity
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strace lies
• Profile the same using ‘gdb’

• Set breakpoints at functions:
– io_submit, io_getevents_0_4 
– kslwtbctx, kslwtectx

• Let gdb continue after breakpoint

• The symbol table is preserved in the oracle binary
• Making it able to set breakpoints at functions
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strace lies
#0  io_submit (ctx=0x7f46fe708000, nr=1, iocbs=0x7fff24547ce0) at io_submit.c:23

#0  io_submit (ctx=0x7f46fe708000, nr=1, iocbs=0x7fff24547ce0) at io_submit.c:23

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128, 
events=0x7fff24550348, timeout=0x7fff24551350) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128, 
events=0x7fff24553428, timeout=0x7fff24554430) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128, 
events=0x7fff24550148, timeout=0x7fff24551150) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128, 
events=0x7fff24553228, timeout=0x7fff24554230) at io_getevents.c:46

#0  0x0000000008f9a652 in kslwtbctx ()

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=1, nr=128, 
events=0x7fff24550138, timeout=0x7fff24551140) at io_getevents.c:46

#0  0x0000000008fa1334 in kslwtectx ()

* edited for clarity
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db file scattered read
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time

file # and # blocks are 
determined

read ready, blocks 
available

ela time of ‘db file scattered read’

read call of # bytes

Basic principle
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db file scattered read
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time

file # and # blocks are 
determined

read ready, blocks 
available

ela time of ‘db file scattered read’

pread64(fd, buf, #bytes, offset)

Implementation
  synchronous IO
  10.2.0.1/11.2.0.1/11.2.0.3

grayed means ‘optional’

Friday, February 8, 13



db file scattered read
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined

read ready, blocks 
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  10.2.0.1
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db file scattered read
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined

read ready, blocks 
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  11.2.0.1
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db file scattered read
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined

read ready, blocks 
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  11.2.0.3
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direct path read - 11g
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• Time spent on waiting for reading blocks for putting 
them into the PGA

• Reports wait time of the request that gets reaped with a 
timed io_getevents() call.

• Multiple IO requests can be submitted with AIO
• At start, Oracle tries to keep 2 IO’s in flight
• Wait time is only reported if ‘waiting’ occurs

– Waiting means: not ALL IO’s can be reaped 
immediately after submitting
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direct path read 11g
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined 
for a number of IO’s

read ready, blocks 
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  11.2.0.1
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direct path read 11g
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined 
for a number of IO’s

read ready, blocks 
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  11.2.0.3
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direct path read
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined 
for a number of IO’s

read ready, blocks 
available

ela time of ‘direct path read’ 

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  10.2.0.1
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direct path read

67

time

file # and # blocks are 
determined 
for a number of IO’s

read ready, blocks 
available

ela time of ‘direct path read’ 
Implementation

  synchronous IO
  10.2.0.1/11.2.0.1/11.2.0.3

pread64(fd, buf, #bytes, offset)
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kfk: async disk IO
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• Only seen with ‘direct path read’ waits and ASM
• Always seen in version 11.2.0.1
• Gone with 11.2.0.2+

• Not normally seen in version 11.2.0.2+

• KFK = Kernel File ASM code layer
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kfk: async disk io
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io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are 
determined 
for a number of IO’s

read ready, blocks 
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
  asynchronous IO
  11.2.0.1

kfk: async disk io
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IO Slots
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Discussion with Kerry Osborne about IO’s on Exadata
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IO Slots
• Jonathan Lewis pointed me to ‘total number of slots’

– v$sysstat
– v$sesstat

• Global or per session number of slots

• ‘Slots are a unit of I/O and this factor controls the 
number of outstanding I/Os’
– Comment with event 10353
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IO Slots
• ‘total number of slots’

– Is NOT cumulative!

• So you won’t capture this statistic when taking delta’s 
from v$sysstat/v$sesstat!
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IO Slots
• Let’s look at the throughput statistics again

– But together with number of slots
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IO Slots
• IO Slots is a mechanism to take advantage of storage 

bandwidth using AIO
• With version 11 direct path reads can be used by both 

PQ slaves as well as non PQ foregrounds
– IO Slots are not used with buffered reads

• Each outstanding asynchronous IO request is tracked 
using what is called a ‘slot’

• Default and minimal number of slots: 2
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‘autotune’

79

• The direct path code changed with version 11
• Second observation:

– The database foreground measures direct path IO 
effectiveness

– It measures time, wait time and throughput
– The oracle process has the ability to add more 

asynchronous IO slots
– Only does so starting from 11.2.0.2
‣ Although the mechanism is there in 11.2.0.1
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‘autotune’
• Introducing event 10365

– “turn on debug information for adaptive direct reads”

• Set to 1 to get debug information
– alter session set events ‘10365 trace name context 

forever, level 1’
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‘autotune’
kcbldrsini: Timestamp 61180 ms
kcbldrsini: Current idx 16
kcbldrsini: Initializing kcbldrps
kcbldrsini: Slave idx 17
kcbldrsini: Number slots 2
kcbldrsini: Number of slots per session 2

*** 2011-11-28 22:58:48.808
kcblsinc:Timing time 1693472, wait time 1291416, ratio 76 st 248752270 cur 250445744
kcblsinc: Timing curidx 17 session idx 17
kcblsinc: Timestamp 64180 ms
kcblsinc: Current idx 17
kcblsinc: Slave idx 17
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 8378 state 2
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0
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‘autotune’
*** 2011-11-28 22:58:54.988
kcblsinc:Timing time 2962717, wait time 2923226, ratio 98 st 253662983 cur 256625702
kcblsinc: Timing curidx 19 session idx 19
kcblsinc: Timestamp 70270 ms
kcblsinc: Current idx 19
kcblsinc: Slave idx 19
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 11210 state 1
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0
kcblsinc: Adding extra slos 1

*** 2011-11-28 22:58:58.999
kcblsinc:Timing time 4011239, wait time 3528563, ratio 87 st 256625785 cur 260637026
kcblsinc: Timing curidx 20 session idx 20
kcblsinc: Timestamp 74170 ms
kcblsinc: Current idx 20
kcblsinc: Slave idx 20
kcblsinc: Number slots 3
kcblsinc: Number of slots per session 3
kcblsinc: Previous throughput 12299 state 2
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‘autotune’
• Looking at the 10365 trace, the reason 11.2.0.1 does 

not ‘autotune’ could be guessed....
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‘autotune’
*** 2011-11-28 22:54:18.361
kcblsinc:Timing time 3092929, wait time 0, ratio 0 st 4271872759 cur 4274965690
kcblsinc: Timing curidx 65 session idx 65
kcblsinc: Timestamp 192430 ms
kcblsinc: Current idx 65
kcblsinc: Slave idx 65
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 20655 state 2
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0

*** 2011-11-28 22:54:21.306
kcblsinc:Timing time 2944852, wait time 0, ratio 0 st 4274965762 cur 4277910616
kcblsinc: Timing curidx 66 session idx 66
kcblsinc: Timestamp 195430 ms
kcblsinc: Current idx 66
kcblsinc: Slave idx 66
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 20746 state 1
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0
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IO slots
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time

# slots starts with 2

kcblsinc ()

io_submit(aio_ctx,1 , {iocb})

11.2.0.3
  FAST IO

io_getevents(aio_ctx, 2, 128, io_event, {0, 0})   OK!

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})

kcblsinc ()

io_getevents(aio_ctx, 2, 128, io_event, {0, 0})   
OK!

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})
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IO slots
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time

11.2.0.3
  FAST IO kcblsinc ()

+1 ‘slos’

io_submit(aio_ctx,1 , {iocb})

io_getevents(aio_ctx, 3, 128, io_event, {0, 0})   
OK!
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Time and waits
• Waits implementation

– Most are system call instrumentation
‣ db file sequential read

– ‘direct path read’ is different.
‣Only shows up if not all IO can be reaped immediately
‣ The wait only occurs if process is truly waiting
‣With AIO, a process has the ability to keep on 

processing without waiting on IO
‣Wait time is not physical IO latency
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Conclusion
• In Oracle version 10.2 and earlier non-PX reads use:

– db file sequential read / db file scattered read events
– Read blocks go to buffercache.

• Starting from Oracle version 11 reads could do both
– buffered reads
– unbuffered or direct path reads 
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Conclusion
• Direct path read is decision in IO codepath of full scan.

– NOT an optimiser decision(!)

• In Oracle version 11, a read is done buffered, unless 
database decides to do a direct path read

• Direct path read decision is influenced by
– Type of read (FTS or FFIS)
– Size of segment (> 5 * _small_table_threshold)
– Number of blocks cached (< ~ 50%)
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Conclusion
• By default, (AIO) direct path read uses two slots.

– ‘autotune’ scales up in steps.
– I’ve witnessed it scale up to 32 slots.

• Direct path code has an ‘autotune’ function, which can 
add IO slots.
– In order to be able to use more bandwidth
– Direct path ‘autotune’ works for PX reads too!

• ‘autotune’ does not kick in with Oracle version 11.2.0.1
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Thank you for attending!

Questions?
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Thanks, Links, etc.
• Tanel Poder
• Jason Arneil
• Klaas-Jan Jongsma
• Doug Burns
• Cary Millsap
• http://afatkulin.blogspot.com/2009/01/11g-adaptive-direct-path-reads-what-is.html
• http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-

full-table-scan-11g/
• http://www.oracle.com/pls/db112/homepage
• http://hoopercharles.wordpress.com/2010/04/10/auto-tuned-

db_file_multiblock_read_count-parameter/
• http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-

in-linux/
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