
ABOUT MULTIBLOCK READS
Frits Hoogland - Hotsos Symposium 2013

Friday, February 8, 13

Who am I?
• Frits Hoogland

– Working with Oracle products since 1996

• Blog: http://fritshoogland.wordpress.com
• Twitter: @fritshoogland
• Email: fhoogland@vxcompany.com
• Oracle ACE Director
• OakTable Member

2

Friday, February 8, 13

Agenda
• Full scan implementation

– Version 10 and earlier versus version 11 and later

• Direct path read slots

• ‘autotune’ / adaptive direct path reads

3

Friday, February 8, 13

What is this presentation about?
• Multiblock reads can behave different after 10.2
• This could lead to different behavior of applications using

the database.

• I assume the audience to have basic understanding
about:
– Oracle execution plans
– Oracle SQL/10046 extended traces
– General execution behavior of the RDBMS engine
– C language in general

4

Friday, February 8, 13

Row source operations
• Multiblock reads are an optimised method to read

database blocks from disk for a database process.

– Mainly used for the:
‣ ‘TABLE ACCESS FULL’
‣ ‘FAST FULL INDEX SCAN’
‣ ‘BITMAP FULL SCAN’

– rowsource operations.

5

Friday, February 8, 13

Row source operations
• For much of other segment access rowsource actions,

like:
– ‘INDEX UNIQUE SCAN’
– ‘INDEX RANGE SCAN’
– ‘INDEX FULL SCAN’
– ‘TABLE ACCESS BY INDEX ROWID’

• single block reads are mostly used.

• The order in which individual blocks are read is
important.

6

Friday, February 8, 13

db file multiblock read count
• Multiblock reads are done up to

DB_FILE_MULTIBLOCK_READ_COUNT blocks.
– If MBRC is unset, default is ‘maximum IO size that

can be efficiently performed’.
– Most operating systems allow a single IO operation

up to 1 MB.
– “Autotuned” (set to 0) seems to calculate its value by

using the parameters ‘sessions’ and
‘db_cache_size’.

– I prefer to set it manually.

7

Friday, February 8, 13

My test environment
• Mac OSX Mountain Lion, VM Ware fusion

– VM: OL6u3 x64
‣Database version 10.2.0.1 and 11.2.0.3
‣ ASM GI 11.2.0.3

– Sample tables:
‣ T1 - 21504 blocks - 176M - 1’000’000 rows

› PK index - 2304 blocks / 19M

‣ T2 - 21504 blocks - 176M - 1’000’000 rows

8

Friday, February 8, 13

First test
• 10.2.0.1 instance:

– sga_target = 600M
– Effective buffercache size = 450M
– Freshly started

9

Friday, February 8, 13

First test

10

TS@v10201 > select /*+ index(t t1_pk_ix) */ count(id), sum(scattered) from t1 t;

 COUNT(ID) SUM(SCATTERED)
---------- --------------
 1000000 9999500000

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
--
0	SELECT STATEMENT		1	5	23234 (1)
1	SORT AGGREGATE		1	5	
2	TABLE ACCESS BY INDEX ROWID	T1	1000K	4884K	23234 (1)
3	INDEX FULL SCAN	T1_PK_IX	1000K		2253 (2)
--

Friday, February 8, 13

First test
• How would you expect Oracle 10.2.0.1 to execute this?

– In other words:
– What would be the result of a SQL trace with waits? *

* If all blocks need to be read from disk (ie. not cached)

11

Friday, February 8, 13

First test
• My guess would be:

– Index root bock (1 block)
– None, one or more branch blocks (1 block)
– Index leaf block, fetch values (1 block)
– Table block via index rowid, fetch value(s) (1/1+ block)
– Index values, block value(s), etc.

12

Friday, February 8, 13

First test
• That should look like something like this:

WAIT #8: nam='db file sequential read' ela= 326 file#=5 block#=43028 blocks=1
WAIT #8: nam='db file sequential read' ela= 197 file#=5 block#=43719 blocks=1
WAIT #8: nam='db file sequential read' ela= 227 file#=5 block#=43029 blocks=1
WAIT #8: nam='db file sequential read' ela= 125 file#=5 block#=20 blocks=1
WAIT #8: nam='db file sequential read' ela= 109 file#=5 block#=21 blocks=1
WAIT #8: nam='db file sequential read' ela= 242 file#=5 block#=22 blocks=1
WAIT #8: nam='db file sequential read' ela= 98 file#=5 block#=23 blocks=1
WAIT #8: nam='db file sequential read' ela= 76 file#=5 block#=24 blocks=1
WAIT #8: nam='db file sequential read' ela= 77 file#=5 block#=25 blocks=1
WAIT #8: nam='db file sequential read' ela= 77 file#=5 block#=26 blocks=1
WAIT #8: nam='db file sequential read' ela= 105 file#=5 block#=27 blocks=1
WAIT #8: nam='db file sequential read' ela= 82 file#=5 block#=28 blocks=1
WAIT #8: nam='db file sequential read' ela= 71 file#=5 block#=29 blocks=1
WAIT #8: nam='db file sequential read' ela= 93 file#=5 block#=43030 blocks=1
...

13

Friday, February 8, 13

First test
• Instead, I get:

WAIT #4: nam='db file scattered read' ela= 361 file#=5 block#=43025 blocks=8
WAIT #4: nam='db file scattered read' ela= 220 file#=5 block#=43713 blocks=8
WAIT #4: nam='db file scattered read' ela= 205 file#=5 block#=17 blocks=8
WAIT #4: nam='db file scattered read' ela= 219 file#=5 block#=25 blocks=8
WAIT #4: nam='db file scattered read' ela= 192 file#=5 block#=33 blocks=8
WAIT #4: nam='db file scattered read' ela= 141 file#=5 block#=41 blocks=8
WAIT #4: nam='db file scattered read' ela= 123 file#=5 block#=49 blocks=8
WAIT #4: nam='db file scattered read' ela= 190 file#=5 block#=57 blocks=8
WAIT #4: nam='db file scattered read' ela= 231 file#=5 block#=43033 blocks=8
WAIT #4: nam='db file scattered read' ela= 113 file#=5 block#=65 blocks=8
...

14

Friday, February 8, 13

First test
• Sets of 8 blocks are read for rowsources which really

need a single block.
• Reason:

– This is an empty cache.
– Oracle reads multiple blocks to get the cache filled.
– ‘cache warming’
‣ Statistic (‘physical reads cache prefetch’)

• Needed to tune the BC down to 50M and pre-warm it
with another table to get single block reads again (!!)

15

Friday, February 8, 13

db_file_multiblock_read_count
• MBRC is the maximum amount of blocks read in one IO.

• Buffered MBRC cannot cross extent borders.

• Concepts guide on full table scans: (11.2 version)
– A scan of table data in which the database

sequentially reads all rows from a table and filters out
those that do not meet the selection criteria. All data
blocks under the high water mark are scanned.

16

Friday, February 8, 13

Full scan - Oracle 10.2
• Let’s look at an Oracle 10.2.0.1 database

– SGA_TARGET 600M

– Table TS.T2 size 21504 blks / 176M

17

Friday, February 8, 13

Full scan - Oracle 10.2
TS@v10201 > set autot on exp stat
TS@v10201 > select count(*) from t2;

 COUNT(*)

 1000000

Execution Plan
--
Plan hash value: 3724264953

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	3674 (1)	00:00:45
1	SORT AGGREGATE		1		
2	TABLE ACCESS FULL	T2	1007K	3674 (1)	00:00:45

18

Friday, February 8, 13

Full scan - Oracle 10.2
Statistics
--
 212 recursive calls
 0 db block gets
 20976 consistent gets
 20942 physical reads
 0 redo size
 515 bytes sent via SQL*Net to client
 469 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 4 sorts (memory)
 0 sorts (disk)
 1 rows processed

19

Friday, February 8, 13

Full scan - Oracle 10.2
SYS@v10201 AS SYSDBA>
select object_id, object_name, owner from dba_objects where object_name = 'T2';

 OBJECT_ID OBJECT_NAME OWNER
---------- --- ------------------
 10237 T2 TS

SYS@v10201 AS SYSDBA> select * from x$kcboqh where obj# = 10237;

ADDR INDX INST_ID TS# OBJ# NUM_BUF HEADER
---------------- -------- --------- ------- ------- --------- ----------------
FFFFFD7FFD5C6FA8 335 1 5 10237 20942 000000038FBCF840

20

Friday, February 8, 13

Full scan - Oracle 10.2
TS@v10201 > select count(*) from t2;

Statistics
--
 0 recursive calls
 0 db block gets
 20953 consistent gets
 0 physical reads
 0 redo size
 515 bytes sent via SQL*Net to client
 469 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

21

Friday, February 8, 13

Full scan - Oracle 11.2
• Now look at an Oracle 11.2.0.3 database

– SGA_TARGET 600M

– Table TS.T2 size 21504 blks / 176M

22

Friday, February 8, 13

Full scan - Oracle 11.2
TS@v11203 > select count(*) from t2;

 COUNT(*)

 1000000

Execution Plan
--
Plan hash value: 3724264953

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	3672 (1)	00:00:45
1	SORT AGGREGATE		1		
2	TABLE ACCESS FULL	T2	1000K	3672 (1)	00:00:45

23

Friday, February 8, 13

Full scan - Oracle 11.2
Statistics
--
 217 recursive calls
 0 db block gets
 20970 consistent gets
 20942 physical reads
 0 redo size
 526 bytes sent via SQL*Net to client
 523 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 4 sorts (memory)
 0 sorts (disk)
 1 rows processed

24

Friday, February 8, 13

Full scan - Oracle 11.2
SYS@v11203 AS SYSDBA>
select object_id, object_name, owner from dba_objects where object_name = 'T2';

 OBJECT_ID OBJECT_NAME OWNER
---------- -- -------------
 66614 T2 TS

SYS@v11203 AS SYSDBA> select * from x$kcboqh where obj# = 66614;

ADDR INDX INST_ID TS# OBJ# NUM_BUF HEADER
---------------- ------- -------- ------ ---------- ---------- ----------------
FFFFFD7FFC541B18 43 1 5 66614 1 000000039043E470

25

Friday, February 8, 13

Full scan - Oracle 11.2
TS@v11203 > select count(*) from t2;

Statistics
--
 0 recursive calls
 0 db block gets
 20945 consistent gets
 20941 physical reads
 0 redo size
 526 bytes sent via SQL*Net to client
 523 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

26

Friday, February 8, 13

Full scan 10.2 vs. 11.2
• Why does version 10 caches all the blocks read,
• And version 11 only 1 of them??

• Let’s do an extended SQL trace
– AKA 10046 level 8 trace.

27

Friday, February 8, 13

Full scan 10.2 vs. 11.2
Relevant part of 10046/8 trace file of version 10.2.0.1:
WAIT #1: nam='db file sequential read' ela= 32941 file#=5 block#=19 blocks=1
WAIT #1: nam='db file scattered read' ela= 4003 file#=5 block#=20 blocks=5
WAIT #1: nam='db file scattered read' ela= 6048 file#=5 block#=25 blocks=8
WAIT #1: nam='db file scattered read' ela= 1155 file#=5 block#=34 blocks=7
WAIT #1: nam='db file scattered read' ela= 860 file#=5 block#=41 blocks=8
WAIT #1: nam='db file scattered read' ela= 837 file#=5 block#=50 blocks=7
WAIT #1: nam='db file scattered read' ela= 1009 file#=5 block#=57 blocks=8
WAIT #1: nam='db file scattered read' ela= 890 file#=5 block#=66 blocks=7
WAIT #1: nam='db file scattered read' ela= 837 file#=5 block#=73 blocks=8
WAIT #1: nam='db file scattered read' ela= 10461 file#=5 block#=82 blocks=7
WAIT #1: nam='db file scattered read' ela= 623 file#=5 block#=89 blocks=8
WAIT #1: nam='db file scattered read' ela= 1077 file#=5 block#=98 blocks=7
WAIT #1: nam='db file scattered read' ela= 49146 file#=5 block#=105 blocks=8
WAIT #1: nam='db file scattered read' ela= 719 file#=5 block#=114 blocks=7
WAIT #1: nam='db file scattered read' ela= 1093 file#=5 block#=121 blocks=8
WAIT #1: nam='db file scattered read' ela= 1293 file#=5 block#=130 blocks=7
WAIT #1: nam='db file scattered read' ela= 2103 file#=5 block#=137 blocks=8
WAIT #1: nam='db file scattered read' ela= 42206 file#=5 block#=147 blocks=126

28

Friday, February 8, 13

Full scan 10.2 vs. 11.2
Relevant part of 10046/8 trace file of version 11.2.0.3:
WAIT #140120507194664: nam='db file sequential read' ela= 12607 file#=5
block#=43394 blocks=1 obj#=14033 tim=1329685383169372
nam='direct path read' ela= 50599 file number=5 first dba=43395 block cnt=13
nam='direct path read' ela= 21483 file number=5 first dba=43425 block cnt=15
nam='direct path read' ela= 10766 file number=5 first dba=43441 block cnt=15
nam='direct path read' ela= 12915 file number=5 first dba=43457 block cnt=15
nam='direct path read' ela= 12583 file number=5 first dba=43473 block cnt=15
nam='direct path read' ela= 11899 file number=5 first dba=43489 block cnt=15
nam='direct path read' ela= 10010 file number=5 first dba=43505 block cnt=15
nam='direct path read' ela= 160237 file number=5 first dba=43522 block cnt=126
nam='direct path read' ela= 25561 file number=5 first dba=43650 block cnt=126
nam='direct path read' ela= 121507 file number=5 first dba=43778 block cnt=126
nam='direct path read' ela= 25253 file number=5 first dba=43906 block cnt=126

29

Friday, February 8, 13

First single block read
• The segment header is read separately

– Single block, read into SGA

• The header block is listed in dba_segments

select owner, segment_name, header_file, header_block
from dba_segments where segment_name like 'T2';

OWNER	 SEGMENT_NAME 	 HEADER_FILE HEADER_BLOCK
---------- -------------------- ----------- ------------
TS T2 5 130

30

Friday, February 8, 13

Full scan 10.2 vs. 11.2
• A full scan uses direct path reads in the v11 case.

– Noticeable by ‘direct path read’ event

– Direct path reads go to PGA
– Which means the blocks read are not cached

31

Friday, February 8, 13

Full scan 10.2 vs. 11.2
• Do all full scans in version 11 always use direct path?

• Direct path reads are considered
– if #blocks of the segment > 5*_small_table_threshold

• PS: MOS note 787373.1
• “How does Oracle load data into the buffer cache for

table scans ?”
• Mentions _small_table_threshold being the limit

– Note INCORRECT!
32

Friday, February 8, 13

Direct path read
Small table threshold of my Oracle 11 instance:
NAME	 	 	 VALUE
-------------------------- --------------------------
_small_table_threshold 245	 	

This means objects up to 245*5=1225 blocks
will be read into buffercache / SGA.
Let’s create a table with a size just below 1225 blocks:
TS@v11203 > create table t1_small as select * from t1 where id <= 47000;

TS@v11203 > exec dbms_stats.gather_table_stats(null,‘T1_SMALL’);

33

Friday, February 8, 13

Direct path read

SYS@v11203 AS SYSDBA>

select segment_name, blocks, bytes
from dba_segments where segment_name = 'T1_SMALL';

SEGMENT_NAME BLOCKS BYTES
-------------------------------------- ---------- ----------
T1_SMALL 1024 8388608

SQL@v11203 AS SYSDBA> alter system flush buffer_cache;

34

Friday, February 8, 13

Direct path read
TS@v11203 > set autot trace exp stat
TS@v11203 > select count(*) from t1_small;

Execution Plan
--
Plan hash value: 1277318887

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	176 (1)	00:00:03
1	SORT AGGREGATE		1		
2	TABLE ACCESS FULL	T1_SMALL	47000	176 (1)	00:00:03

35

Friday, February 8, 13

Direct path read
Statistics
--
	 0 recursive calls
	 0 db block gets
	 983 consistent gets
	 979 physical reads
	 0 redo size
	 527 bytes sent via SQL*Net to client
	 523 bytes received via SQL*Net from client
	 2 SQL*Net roundtrips to/from client
	 0 sorts (memory)
	 0 sorts (disk)
	 1 rows processed

36

Friday, February 8, 13

Direct path read
SYS@v11203 AS SYSDBA>
select object_id, object_name, owner
from dba_objects where object_name = 'T1_SMALL';

 OBJECT_ID OBJECT_NAME OWNER
---------- -- -------------
 66729 T1_SMALL TS

SYS@v11203 AS SYSDBA> select * from x$kcboqh where obj# = 66729;

ADDR INDX INST_ID TS# OBJ# NUM_BUF HEADER
---------------- ------ ------- ------ ------- ---------- ----------------
FFFFFD7FFC6E1EF0 0 1 5 66729 979 0000000390437840

37

Friday, February 8, 13

Direct path read

Ah, now the full scan is buffered!

Another scan will reuse the cached blocks now:

TS@v11203 > select count(*) from t1_small;

...

Statistics
--
	 0 recursive calls
	 0 db block gets
	 983 consistent gets
	 0 physical reads

38

Friday, February 8, 13

Direct path read

• What type of wait event will be used for a full scan:

– Oracle version 11.2
– If segment is smaller than 5 * _small_table_threshold

39

Friday, February 8, 13

Direct path read

Well, try it:
TS@v11203 > alter session set events ‘10046 trace name context forever, level 8’;
TS@v11203 > select count(*) from t1_small;
...
TS@v11203 > alter session set events ‘10046 trace name context off’;

It shows:
WAIT #140358956326184: nam='db file sequential read' ela= 38476 file#=5
block#=88706 blocks=1 obj#=14047 tim=1330369985672633
nam='db file scattered read' ela= 116037 file#=5 block#=88707 blocks=5
nam='db file scattered read' ela= 56675 file#=5 block#=88712 blocks=8
nam='db file scattered read' ela= 11195 file#=5 block#=88721 blocks=7
nam='db file scattered read' ela= 132928 file#=5 block#=88728 blocks=8
nam='db file scattered read' ela= 18692 file#=5 block#=88737 blocks=7
nam='db file scattered read' ela= 87817 file#=5 block#=88744 blocks=8

40

Friday, February 8, 13

Oracle 11 multiblock IO
• In version 11 of the Oracle database

– Multiblocks reads use both wait events:

‣ db file scattered read
‣ direct path read

– Which are two different codepath’s

41

Friday, February 8, 13

Implementation
• Buffered multiblock reads

– Buffered multiblock reads == ‘db file scattered read’
– Up to version 10 the ONLY option for non-PQ

multiblock reads
– Starting from version 11, a possible multiblock read

option

42

Friday, February 8, 13

Buffered multiblock reads
SYS@v10201 AS SYSDBA> select segment_name, extent_id, block_id, blocks, bytes
from dba_extents where segment_name = 'T2' and owner = 'TS' order by extent_id;

SEGMENT_NAME EXTENT_ID BLOCKS BYTES
------------------------------------- ---------- --------- ----------
T2 0 8 65536
...
T2 15 8 65536
T2 16 128 1048576
...
T2 78 128 1048576
T2 79 1024 8388608
...
T2 91 1024 8388608

43

Friday, February 8, 13

Buffered multiblock reads
Version 10 multiblock reads:
WAIT #2: nam='db file sequential read' ela= 12292 file#=5 block#=19 blocks=1
WAIT #2: nam='db file scattered read' ela= 179162 file#=5 block#=20 blocks=5
WAIT #2: nam='db file scattered read' ela= 47597 file#=5 block#=25 blocks=8
WAIT #2: nam='db file scattered read' ela= 5206 file#=5 block#=34 blocks=7
WAIT #2: nam='db file scattered read' ela= 94101 file#=5 block#=41 blocks=8
WAIT #2: nam='db file scattered read' ela= 512 file#=5 block#=50 blocks=7
WAIT #2: nam='db file scattered read' ela= 87657 file#=5 block#=57 blocks=8
WAIT #2: nam='db file scattered read' ela= 27488 file#=5 block#=66 blocks=7
WAIT #2: nam='db file scattered read' ela= 24316 file#=5 block#=73 blocks=8
WAIT #2: nam='db file scattered read' ela= 55251 file#=5 block#=82 blocks=7
WAIT #2: nam='db file scattered read' ela= 641 file#=5 block#=89 blocks=8
WAIT #2: nam='db file scattered read' ela= 455 file#=5 block#=98 blocks=7
WAIT #2: nam='db file scattered read' ela= 43826 file#=5 block#=105 blocks=8
WAIT #2: nam='db file scattered read' ela= 32685 file#=5 block#=114 blocks=7
WAIT #2: nam='db file scattered read' ela= 60212 file#=5 block#=121 blocks=8
WAIT #2: nam='db file scattered read' ela= 37735 file#=5 block#=130 blocks=7
WAIT #2: nam='db file scattered read' ela= 59565 file#=5 block#=137 blocks=8
(ps: edited for clarity)

44

Friday, February 8, 13

45

17

25

33

41

49

57

65

73

81

89

97

105

113

121

129

137

145

273

401

529

657

785

nam='db file sequential read' ela= 12292 file#=5 block#=19
blocks=1
nam='db file scattered read' ela= 179162 file#=5 block#=20
blocks=5
nam='db file scattered read' ela= 47597 file#=5 block#=25
blocks=8
nam='db file scattered read' ela= 5206 file#=5 block#=34
blocks=7
nam='db file scattered read' ela= 94101 file#=5 block#=41
blocks=8
nam='db file scattered read' ela= 512 file#=5 block#=50
blocks=7
nam='db file scattered read' ela= 87657 file#=5 block#=57
blocks=8
nam='db file scattered read' ela= 87657 file#=5 block#=147
blocks=126

Friday, February 8, 13

46

Non buffered multiblock reads
WAIT #140120507194664: nam='db file sequential read' ela= 12607 file#=5
block#=43394 blocks=1 obj#=14033 tim=1329685383169372

nam='direct path read' ela= 50599 file number=5 first dba=43395 block cnt=13
nam='direct path read' ela= 21483 file number=5 first dba=43425 block cnt=15
nam='direct path read' ela= 10766 file number=5 first dba=43441 block cnt=15
nam='direct path read' ela= 12915 file number=5 first dba=43457 block cnt=15
nam='direct path read' ela= 12583 file number=5 first dba=43473 block cnt=15
nam='direct path read' ela= 11899 file number=5 first dba=43489 block cnt=15
nam='direct path read' ela= 10010 file number=5 first dba=43505 block cnt=15
nam='direct path read' ela= 160237 file number=5 first dba=43522 block cnt=126
nam='direct path read' ela= 25561 file number=5 first dba=43650 block cnt=126
nam='direct path read' ela= 121507 file number=5 first dba=43778 block cnt=126
nam='direct path read' ela= 25253 file number=5 first dba=43906 block cnt=126

Friday, February 8, 13

47

43392

43400

43408

43418

43424

43432

43440

43448

43456

43464

43472

43480

43488

43496

43504

43512

43520

43648

43776

43904

nam='db file sequential read' ela= 12607 file#=5
block#=43394 blocks=1
nam='direct path read' ela= 50599 file number=5 first
dba=43395 block cnt=13not in tracefile. more on this later.nam='direct path read' ela= 21483 file number=5 first
dba=43425 block cnt=15

Friday, February 8, 13

48

ASSM
• Automatic segment space management

– Tablespace property
– Default since Oracle 10.2

• Uses L 1/2/3 bitmap blocks for space management

• With extent size of
– 8 blocks: 1 BMB as first block of every other extent
– 128 blocks: 2 BMB as first blocks in all extents
– 1024 blocks: 4 BMB as first blocks in all extents

Friday, February 8, 13

Multiblock implementation
• Conclusion:

– Buffered reads scan up to:
‣Non data (space admin. bitmap) block
‣ Extent border
‣ Block already in cache (from TOP, didn’t test this)

– Direct path/non buffered reads scan up to:
‣Non data (space admin. bitmap) block
‣ Block already in cache (from TOP, didn’t test this)

49

Friday, February 8, 13

Waits and implementation
• ‘Wait’ or wait event

– Part of the formula:
‣ Elapsed time = CPU time + Wait time

• Inside the Oracle database it is meant to record the
time spent in a specific part of the oracle database
code not running on CPU.

• Let’s look at the implementation of some of the wait
events for multiblock reads!

50

Friday, February 8, 13

strace
• Linux tool for tracing (viewing) system calls

– Solaris/AIX: truss, HPUX: tusc.

• Very, very, useful to understand what is happening
• Much people are using it for years

51

• STRACE LIES! (at least on linux)

Friday, February 8, 13

strace lies
• Strace doesn’t show io_getevents() if:

– timeout struct set to {0,0} (‘zero’)
– does not succeed in reaping min_nr IO’s

• This strace omission is not documented

52

Friday, February 8, 13

strace lies
• This is best seen with system’s IO capability severely

throttled (1 IOPS)
• See http://fritshoogland.wordpress.com/2012/12/15/

throttling-io-with-linux/

• Cgroups
– Control groups
– Linux feature
– Fully available with OL6

53

Friday, February 8, 13

http://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux/
http://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux/
http://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux/
http://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux/

strace lies
• Strace output

– Version 11.2.0.3 (reason shown later)
– IO throttled to 1 IOPS
– Full table scan doing count(*) on t2
– With 10046 at level 8
‣ To show where waits are occuring

– Start of FTS, up to first reap of IO

54

Friday, February 8, 13

strace lies
io_submit(139801394388992, 1, {{0x7f260a8b3450, 0, 0, 0, 257}}) = 1

io_submit(139801394388992, 1, {{0x7f260a8b31f8, 0, 0, 0, 257}}) = 1

io_getevents(139801394388992, 1, 128, {{0x7f260a8b3450, 0x7f260a8b3450, 106496,
0}}, {600, 0}) = 1

write(8, "WAIT #139801362351208: nam='dire"..., 133) = 133

* edited for clarity

55

Friday, February 8, 13

strace lies
• Profile the same using ‘gdb’

• Set breakpoints at functions:
– io_submit, io_getevents_0_4
– kslwtbctx, kslwtectx

• Let gdb continue after breakpoint

• The symbol table is preserved in the oracle binary
• Making it able to set breakpoints at functions

56

Friday, February 8, 13

strace lies
#0 io_submit (ctx=0x7f46fe708000, nr=1, iocbs=0x7fff24547ce0) at io_submit.c:23

#0 io_submit (ctx=0x7f46fe708000, nr=1, iocbs=0x7fff24547ce0) at io_submit.c:23

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128,
events=0x7fff24550348, timeout=0x7fff24551350) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128,
events=0x7fff24553428, timeout=0x7fff24554430) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128,
events=0x7fff24550148, timeout=0x7fff24551150) at io_getevents.c:46

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=2, nr=128,
events=0x7fff24553228, timeout=0x7fff24554230) at io_getevents.c:46

#0 0x0000000008f9a652 in kslwtbctx ()

Breakpoint 3, io_getevents_0_4 (ctx=0x7f46fe708000, min_nr=1, nr=128,
events=0x7fff24550138, timeout=0x7fff24551140) at io_getevents.c:46

#0 0x0000000008fa1334 in kslwtectx ()

* edited for clarity

57

Friday, February 8, 13

db file scattered read

58

time

file # and # blocks are
determined

read ready, blocks
available

ela time of ‘db file scattered read’

read call of # bytes

Basic principle

Friday, February 8, 13

db file scattered read

59

time

file # and # blocks are
determined

read ready, blocks
available

ela time of ‘db file scattered read’

pread64(fd, buf, #bytes, offset)

Implementation
 synchronous IO
 10.2.0.1/11.2.0.1/11.2.0.3

grayed means ‘optional’

Friday, February 8, 13

db file scattered read

60

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined

read ready, blocks
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 10.2.0.1

Friday, February 8, 13

db file scattered read

61

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined

read ready, blocks
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 11.2.0.1

Friday, February 8, 13

db file scattered read

62

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined

read ready, blocks
available

ela time of ‘db file scattered read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 11.2.0.3

Friday, February 8, 13

direct path read - 11g

63

• Time spent on waiting for reading blocks for putting
them into the PGA

• Reports wait time of the request that gets reaped with a
timed io_getevents() call.

• Multiple IO requests can be submitted with AIO
• At start, Oracle tries to keep 2 IO’s in flight
• Wait time is only reported if ‘waiting’ occurs

– Waiting means: not ALL IO’s can be reaped
immediately after submitting

Friday, February 8, 13

direct path read 11g

64

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined
for a number of IO’s

read ready, blocks
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 11.2.0.1

Friday, February 8, 13

direct path read 11g

65

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined
for a number of IO’s

read ready, blocks
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 11.2.0.3

Friday, February 8, 13

direct path read

66

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined
for a number of IO’s

read ready, blocks
available

ela time of ‘direct path read’

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 10.2.0.1

Friday, February 8, 13

direct path read

67

time

file # and # blocks are
determined
for a number of IO’s

read ready, blocks
available

ela time of ‘direct path read’
Implementation

 synchronous IO
 10.2.0.1/11.2.0.1/11.2.0.3

pread64(fd, buf, #bytes, offset)

Friday, February 8, 13

kfk: async disk IO

68

• Only seen with ‘direct path read’ waits and ASM
• Always seen in version 11.2.0.1
• Gone with 11.2.0.2+

• Not normally seen in version 11.2.0.2+

• KFK = Kernel File ASM code layer

Friday, February 8, 13

kfk: async disk io

69

io_getevents(aio_ctx, min_nr, nr, io_event, timeout)

time

file # and # blocks are
determined
for a number of IO’s

read ready, blocks
available

ela time of ‘direct path read’*

io_submit(aio_ctx, #cb, {iocb})

Implementation
 asynchronous IO
 11.2.0.1

kfk: async disk io

Friday, February 8, 13

IO Slots

70

Discussion with Kerry Osborne about IO’s on Exadata

Friday, February 8, 13

71

Friday, February 8, 13

72

Friday, February 8, 13

73

IO Slots
• Jonathan Lewis pointed me to ‘total number of slots’

– v$sysstat
– v$sesstat

• Global or per session number of slots

• ‘Slots are a unit of I/O and this factor controls the
number of outstanding I/Os’
– Comment with event 10353

Friday, February 8, 13

IO Slots
• ‘total number of slots’

– Is NOT cumulative!

• So you won’t capture this statistic when taking delta’s
from v$sysstat/v$sesstat!

74

Friday, February 8, 13

IO Slots
• Let’s look at the throughput statistics again

– But together with number of slots

75

Friday, February 8, 13

76

Friday, February 8, 13

77

Friday, February 8, 13

78

IO Slots
• IO Slots is a mechanism to take advantage of storage

bandwidth using AIO
• With version 11 direct path reads can be used by both

PQ slaves as well as non PQ foregrounds
– IO Slots are not used with buffered reads

• Each outstanding asynchronous IO request is tracked
using what is called a ‘slot’

• Default and minimal number of slots: 2

Friday, February 8, 13

‘autotune’

79

• The direct path code changed with version 11
• Second observation:

– The database foreground measures direct path IO
effectiveness

– It measures time, wait time and throughput
– The oracle process has the ability to add more

asynchronous IO slots
– Only does so starting from 11.2.0.2
‣ Although the mechanism is there in 11.2.0.1

Friday, February 8, 13

‘autotune’
• Introducing event 10365

– “turn on debug information for adaptive direct reads”

• Set to 1 to get debug information
– alter session set events ‘10365 trace name context

forever, level 1’

80

Friday, February 8, 13

‘autotune’
kcbldrsini: Timestamp 61180 ms
kcbldrsini: Current idx 16
kcbldrsini: Initializing kcbldrps
kcbldrsini: Slave idx 17
kcbldrsini: Number slots 2
kcbldrsini: Number of slots per session 2

*** 2011-11-28 22:58:48.808
kcblsinc:Timing time 1693472, wait time 1291416, ratio 76 st 248752270 cur 250445744
kcblsinc: Timing curidx 17 session idx 17
kcblsinc: Timestamp 64180 ms
kcblsinc: Current idx 17
kcblsinc: Slave idx 17
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 8378 state 2
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0

81

Friday, February 8, 13

‘autotune’
*** 2011-11-28 22:58:54.988
kcblsinc:Timing time 2962717, wait time 2923226, ratio 98 st 253662983 cur 256625702
kcblsinc: Timing curidx 19 session idx 19
kcblsinc: Timestamp 70270 ms
kcblsinc: Current idx 19
kcblsinc: Slave idx 19
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 11210 state 1
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0
kcblsinc: Adding extra slos 1

*** 2011-11-28 22:58:58.999
kcblsinc:Timing time 4011239, wait time 3528563, ratio 87 st 256625785 cur 260637026
kcblsinc: Timing curidx 20 session idx 20
kcblsinc: Timestamp 74170 ms
kcblsinc: Current idx 20
kcblsinc: Slave idx 20
kcblsinc: Number slots 3
kcblsinc: Number of slots per session 3
kcblsinc: Previous throughput 12299 state 2

82

Friday, February 8, 13

‘autotune’
• Looking at the 10365 trace, the reason 11.2.0.1 does

not ‘autotune’ could be guessed....

83

Friday, February 8, 13

‘autotune’
*** 2011-11-28 22:54:18.361
kcblsinc:Timing time 3092929, wait time 0, ratio 0 st 4271872759 cur 4274965690
kcblsinc: Timing curidx 65 session idx 65
kcblsinc: Timestamp 192430 ms
kcblsinc: Current idx 65
kcblsinc: Slave idx 65
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 20655 state 2
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0

*** 2011-11-28 22:54:21.306
kcblsinc:Timing time 2944852, wait time 0, ratio 0 st 4274965762 cur 4277910616
kcblsinc: Timing curidx 66 session idx 66
kcblsinc: Timestamp 195430 ms
kcblsinc: Current idx 66
kcblsinc: Slave idx 66
kcblsinc: Number slots 2
kcblsinc: Number of slots per session 2
kcblsinc: Previous throughput 20746 state 1
kcblsinc: adaptive direct read mode 1, adaptive direct write mode 0

84

Friday, February 8, 13

IO slots

85

time

slots starts with 2

kcblsinc ()

io_submit(aio_ctx,1 , {iocb})

11.2.0.3
 FAST IO

io_getevents(aio_ctx, 2, 128, io_event, {0, 0}) OK!

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})

kcblsinc ()

io_getevents(aio_ctx, 2, 128, io_event, {0, 0})
OK!

kcbgtcr ()

io_submit(aio_ctx,1 , {iocb})

Friday, February 8, 13

IO slots

86

time

11.2.0.3
 FAST IO kcblsinc ()

+1 ‘slos’

io_submit(aio_ctx,1 , {iocb})

io_getevents(aio_ctx, 3, 128, io_event, {0, 0})
OK!

Friday, February 8, 13

Time and waits
• Waits implementation

– Most are system call instrumentation
‣ db file sequential read

– ‘direct path read’ is different.
‣Only shows up if not all IO can be reaped immediately
‣ The wait only occurs if process is truly waiting
‣With AIO, a process has the ability to keep on

processing without waiting on IO
‣Wait time is not physical IO latency

87

Friday, February 8, 13

Conclusion
• In Oracle version 10.2 and earlier non-PX reads use:

– db file sequential read / db file scattered read events
– Read blocks go to buffercache.

• Starting from Oracle version 11 reads could do both
– buffered reads
– unbuffered or direct path reads

88

Friday, February 8, 13

Conclusion
• Direct path read is decision in IO codepath of full scan.

– NOT an optimiser decision(!)

• In Oracle version 11, a read is done buffered, unless
database decides to do a direct path read

• Direct path read decision is influenced by
– Type of read (FTS or FFIS)
– Size of segment (> 5 * _small_table_threshold)
– Number of blocks cached (< ~ 50%)

89

Friday, February 8, 13

Conclusion
• By default, (AIO) direct path read uses two slots.

– ‘autotune’ scales up in steps.
– I’ve witnessed it scale up to 32 slots.

• Direct path code has an ‘autotune’ function, which can
add IO slots.
– In order to be able to use more bandwidth
– Direct path ‘autotune’ works for PX reads too!

• ‘autotune’ does not kick in with Oracle version 11.2.0.1

90

Friday, February 8, 13

Thank you for attending!

Questions?

91

Friday, February 8, 13

Thanks, Links, etc.
• Tanel Poder
• Jason Arneil
• Klaas-Jan Jongsma
• Doug Burns
• Cary Millsap
• http://afatkulin.blogspot.com/2009/01/11g-adaptive-direct-path-reads-what-is.html
• http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-

full-table-scan-11g/
• http://www.oracle.com/pls/db112/homepage
• http://hoopercharles.wordpress.com/2010/04/10/auto-tuned-

db_file_multiblock_read_count-parameter/
• http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-

in-linux/

92

Friday, February 8, 13

http://afatkulin.blogspot.com/2009/01/11g-adaptive-direct-path-reads-what-is.html
http://afatkulin.blogspot.com/2009/01/11g-adaptive-direct-path-reads-what-is.html
http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-full-table-scan-11g/
http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-full-table-scan-11g/
http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-full-table-scan-11g/
http://dioncho.wordpress.com/2009/07/21/disabling-direct-path-read-for-the-serial-full-table-scan-11g/
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-in-linux/
http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-in-linux/
http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-in-linux/
http://fritshoogland.wordpress.com/2012/04/26/getting-to-know-oracle-wait-events-in-linux/

