
ODTUG Technical Journal, Q1 2012

The Future of Forms is... Forms!
In a past installment of this column, I wrote about 'end users that went on strike' because they refused

to make use of the Forms application in their company. I described in that column how a new

generation of users - definitely outside the company but increasingly also within the enterprise

perimeter - has new demands for the applications they use for their every day jobs. Used to social

networks and popular web sites, working with modern devices such as iPhone and iPad and accustomed

to media-rich, visually appealing apps and sites, they won't settle for the technology and look and feel

from the '90s that is typical of most Forms applications.

This column prompted a riposte from Grant Ronald, Product Manager at Oracle for (among others)

Forms - which in turn led to Grant and me presenting at the UKOUG 2011 conference on the future of

forms under the same title of this column (see http://www.slideshare.net/lucasjellema/the-future-of-

forms-is-forms-and-some-friends-ukoug-2011-with-grant-ronald for the slides from this presentation).

Does this mean that I have misjudged the modern enterprise application user? That I have revised my

opinion? Well, not as such. The title of this column is true, but it is not the whole truth.

The whole truth is that on the one hand Forms still has a lot of future left in it. It has fulfilled a particular

job in the past and for quite some time to come it will continue to play that role, especially given the

evolution it has undergone itself. However, certain new functional requirements, new user groups and

interaction channels as well as new architectural directions will also bring in new technologies. Forms

and these new technologies should integrate as good as possible, ideally share infrastructure and reuse

application components. The better this integration, reuse and sharing, the more future there will be for

Forms.

The Evolution of Forms

Forms is part of Fusion Middleware. This means for example that the Forms 11g releases run on

WebLogic Server - which is clearly the strategic way forward in terms of application servers out of

Oracle. Administration for Forms is integrated through Enterprise Manager FMW Control along with all

other FMW components. The clustering, monitoring and management facilities available for WebLogic

and FMW can be used for Forms too - and are a step up from the Forms 10g on OAS tooling.

October 2011 saw the release of Forms 11gR2, and for late 2012 or early 2013 we can also expect the

Forms 12c release. The evolution of Forms continues - albeit with fairly small steps. Support for Forms

has been announced (extended support for 11gR2) until October 2017; we can assume that Forms 12c

will have support until way beyond that date. The conclusion should be, that there are no technical or

support related reasons for abandoning Forms.

The above statements demonstrate that Forms is alive. They do not make anything clear about the

functional enhancements that have been made to Forms in the last decade. It is worthwhile spending

some time on the most important functional capabilities. These help implement new functional

requirements using Forms, modernize the look and feel of existing applications and achieve integration

with standard technologies.

Java integration through Pluggable Java Components and Java Importer

Already introduced in Forms 9i and enhanced over the years ever since, Forms has strong capabilities

regarding the integration of Java. The Java Importer on the middle tier allows the integration of Java

Classes into the Form to leverage Java and JEE capabilities such as sending emails, publish to JMS or

invoke a WebService. Even more useful is the Java integration on the client side, through Pluggable Java

Components (PJCs). The PJCs can be used to create custom UI widgets, enhance standard widgets,

support various user actions and render data in new ways. Make sure to look for inspiration on

http://forms.pjc.bean.over-blog.com/articles-blog.html where you will find a large collection of PJC

samples - most are ready to use - and a vibrant community of dedicated Forms followers. Many UI

widgets you may know from rich UIs on the web or desktop are available or can be created for your

Forms applications, through PJCs. Examples include Google Map display, rich text editor, calculator

attached to item, spell check facilities, PDF Viewer, auto completion behavior on text items, POP3 email

reader, rich charts and graphs (Community Project FormsGraph)

One community project deserves a special mention: the Forms Look and Feel community project. This

project shares a PJC library that allows tuning of the look and feel of your Forms applications, using CSS

stylesheets - used for regular HTML based web application. The PJCs interpret the CSS instructions and

apply them to the Form items. This allows you to manipulate colors, fonts, shapes and many other

aspects of the Form and the items in them - enabling a UI with a look and feel that is quite far removed

from the regular - and not all that modern and attractive - Forms look and feel. The next illustration

gives a simple example of what can be done.

JavaScript API

An important enhancement in Forms 11g was the introduction of the JavaScript bridge. An API has been

defined that allows JavaScript functions in the web-page that embeds the Forms applet to call into the

form and at the same time enable Triggers and Program Units in the form to call out to JavaScript

functions in the embedding web-page. This bridge makes it possible to create a client side mash up of

Forms and HTML and JavaScript content rendered by other technologies, such as PHP, .NET, APEX or

ADF. Events in one area of the page can be communicated to the form and vice versa which makes it

possible to mutually synchronize and present an almost seamless user interface.

The JavaScript bridge opens up another interesting option: integration of Forms applications with the

latest evolution in web technologies: WebSockets, one of the key constituents of HTML 5. WebSockets

provides a lean and bi-directional communication protocol that allows for real push from server to

client. Pushed messages are intercepted in JavaScript and can be forwarded into the form. In other

words: Forms 11g applications can adopt WebSockets and thereby be push- enabled, fully participating

in the latest development on the web. Note that even without embarking on WebSockets, the

JavaScript bridge in combination with frameworks such as CometD allows a form of cross server push

functionality.

AQ based push

In addition to the push discussed above which happens outside of the Forms Server, the 11gR1 release

of Forms introduced push based on Advanced Queuing and handled by the Forms Server itself. A form

can subscribe to events that are published as messages on an Advanced Queue in the underlying Oracle

Database. This mechanism can be used to update forms and alert users as a result of events taking place

in the database - or published to the database from other sources. It can also be leveraged to have on

Forms-session (apparently) interacting with another. You could for example create a chat facility in

Forms with users interacting via the Forms Server, AQ and the push facility.

Miscellaneous 11g improvements

Other recent improvements in Forms 11g include the ability to have a Forms application leverage the
concept of Database Proxy Users. This allows users to be authenticated in the middle tier using accounts
defined in Oracle Internet Directory. The proxy user - a single database account without any privileges
used by Forms to connect to the database - can act on behalf of one or usually more database accounts
with real application privileges. Using proxy users, You will increase the security of your application by
separating the accounts which create database sessions from the accounts that can modify the
database. In addition, the notion of every Forms end user requiring a database schema can be
abandoned.

De recent 11gR2 release introduced integration with 11g Access Manager. Oracle Access Manager is an
identity management solution that provides centralized authentication, policy based authorizations and
auditing for all Fusion Middleware products. With 11g Release 2 you can use Oracle Access Manager for
authentication and authorization of Forms applications.

Also new in 11gR2 are several features to allow more fine-grained recording of information such as
which pages a user visits, how long they spend on those pages and even how long it takes them to
perform a specific task, using Real User Experience Interaction (RUEI) - a feature of Oracle Fusion
Middleware in Enterprise Manager that provides non-intrusive monitoring, giving insight into how a user
is interacting with an application.

Just to be sure: JInitiator, the special browser plug in previously required to run the Forms applet has
been abandoned long time ago. Today, a regular browser with the standard Java plug in - that most
browsers not running on Apple's mobile devices already have installed - can run Forms applications.

FoFs - Friends of Forms

Forms does not stand on its own. In the past, a Forms application with its own associated database may

have been all you needed, but today's world requires integration of various technologies to together

provide the required functionality. Additionally, organizations may well - and perhaps even should -

choose to embark on a path to a more modern architecture and associated tool and skill set. Such a path

can be evolutionary, adopting a hybrid environment for a prolonged period of time.

Through the bridges in Forms to standard technologies such as Java, JavaScript and AQ, integration and

interaction with other components of Fusion Middleware and even 3rd party tools and technologies are

a real possibility.

One example of this is the embedding of Forms in web applications created using other technologies

including ADF, APEX and even PHP or any other web framework. Java Script is used to trigger the Form

to set parameters, query the right data and otherwise synchronize with whatever is happening outside

the Form in the part of the page that is governed by the web application. Vice versa, the Form will

inform the web application of its doings, also through the JavaScript API. Navigation can be started in

both the Form and the web application and apply to both parts.

This principle has been applied for a number of years in the OraFormsFaces product from Commit

Consulting (http://www.commit-consulting.com/oraformsfaces/) proving the value of this approach for

the combination of ADF and Forms. The next illustration shows an ADF application that embeds in one

of its pages a Form. Navigation and the data context is triggered in the web application, the Form

synchronizes accordingly.

Another increasingly common combination is Forms with SOA Suite - both part of Fusion Middleware,

both running on WebLogic Server. Forms - through PJCs or imported Java Classes - can for example

invoke the Web Services exposed on the SOA Suite. Additionally, Forms can use PJCs to communicate

with the Human Workflow Service API in the SOA Suite and thus provide an alternative UI for human

tasks that are instantiated in BPEL or BPM processes. The support for Advanced Queuing in Forms 11g

introduce even more options for interacting, including some really farfetched ones:

The next illustration shows an asynchronous WebService exposed by the SOA Suite. A call to this

WebService can be handled by a Mediator component that invokes the AQ Adapter to put a message on

a queue. The Forms application can be registered on that queue. The message is pushed to one of the

Forms sessions and can appear to a user in the form of a question that needs to be answered. The user

keys in the reply, the Form posts that reply as a correlated message on another queue which is picked

up by the AQ Adapter in SOA Suite that finally (and asynchronously) return the response to the caller.

Note: this will not be an everyday scenario. However, it does show the capabilities of Forms to interact

with 'the rest of the world'.

Moving Forms Forward

The future of Forms may be Forms, but that does not mean that nothing will change. Forms will not help

you address new business requirements regarding mobile applications, external (self service) user

groups, integration with standard applications - possibly cloud based - and cross application data

integration. You should prepare for a future that consists of a hybrid architecture with a database (or

more than one), your current Forms application (that can serve existing user groups for current

functional requirements for some time to come - possibly with some refinements to the look and feel)

and new components such as SOA Suite, (extranet or internet) web applications and other enterprise

resources such as content management systems, standard applications, BI servers and message

infrastructures.

The next illustration shows an example of such a hybrid architecture as seen at one of my customers:

The Forms application, dating back to the late 90's is still very much in much for the professional

workers, all on the internet and all specially trained on the application. They do the heavy lifting

regarding the data and will typically use the application for intensive data manipulation for many hours

per day. In the last few years, customers and business partners have gained access to data and

operations, first through web services and later through an ADF based internet portal.

The team that worked on the Forms application since the end of last century is still doing that. They

upgraded the Forms from Client/Server to WebForms 9i and later 10g, and now to 11g to benefit from

the shared WebLogic based run time infrastructure and administration capabilities as the other FMW

components they have deployed. An important task for the team has been to open up their database.

To call it their database is not really appropriate - even though that is how they feel about it. It used to

be the database for the Forms application and it even has the same name as the application. However,

the application is only one of many consumers of the database and the two - database and application -

should really be considered two separate entities. This means for example that the assumption in the

past that protecting data integrity - enforcing data oriented business rules -could be done in either the

form or in the database because it was all part of the same stack. With other components accessing the

database - and not going through the Forms application - this clearly no longer holds true. Some of their

business logic had to be transferred from forms PL/SQL program units to database stored procedures.

Additionally, blocks in Forms are typically based directly on tables or views at best. In the decoupled

world that we strive for today, the services in the Oracle Service Bus that access the database should

ideally not execute SQL but instead invoke a PL/SQL API that performs the SQL required. The team is

currently working on PL/SQL packages that provides data services to the SOA team that implements the

enterprise services in OSB. At this moment, the same team also works on the Forms application, but in

the near future the team may well be split up into two , doing more justice to the clear split between the

application and the database it leverages.

There may be even good reasons, in addition to allowing other to reuse the database under the Forms

application, to have the application itself invoke services on the enterprise service bus and thus access

other enterprise resources to add additional functionality to existing Forms applications.

Note that when we discuss Future of Forms and Forms applications, we should also discuss the Future of

Forms developers. As you can tell from above, there is a future for Forms developers, because Forms as

a development platform will be around for some time to come. However, I do not see many new

applications developed in Forms or even major functional extensions to or rewrites of existing ones.

There will gradually be less work in the area of Forms development in the near future.

Forms developers can evolve their own competitive edge - as well as providing added value to their end

users - by investing in Java skills. In the short term, this will allow them to make use of Pluggable Java

Components and Java Importer and in the long run, it will enable them to gradually move to other

development technologies. Acquiring more HTML (5) and JavaScript skills is another valuable action for

Forms developers: using the JavaScript bridge introduced in Forms 11g, a richer integration can be

achieved of Forms in HTML pages. Additionally, these skill are valid for web and mobile applications

created in any of a wide variety of alternative development technologies. Finally, it is my experience that

many Forms developers - despite having been Oracle developer for many years - are typically not

entirely up to speed with current capabilities of the Oracle Database, in both SQL and PL/SQL. It really

pays off for developers to update their working knowledge of these core technologies.

Conclusion

The Future of Forms is…. Forms - or rather: a landscape in which Forms will probably play an important

role for quite some time to come – along with new technologies to cater for new user groups, new

channels and new functional requirements. Organizations may well continue to use their existing Forms

applications - for current functional requirements and existing user groups. It is not easy to put together

a business case for replacing these existing applications with applications offering exactly the same

functionality - albeit in a different technology. Especially since if this replacement entails a divestment of

the skill set of the development team. There is no pressing need - because of risk management,

technical limitations or support reasons - to abandon Forms on short notice.

Major new developments should not lightly be undertaken in Forms though. More modern

technologies are available that offer additional functionality, are more standards oriented and are more

widely accepted and are more strategic to Oracle and as such have a far longer estimated life span and a

more intensive evolution.

