Workshop Getting started with EJB 3.0 Persistence API
9th February 2006, AMIS – Nieuwegein

In this workshop, we will learn how to get started with the EJB 3.0 Persistence API. We will work with the GlassFish Reference Implementation, with stand-alone J2SE applications – so outside the container – focusing on the core Persistence API concepts.

In the workshop, we will start with configuring our environment and creating our first running EJB 3.0 Persistence application – the equivalent of an HelloWorld. For this we need only a basic set of Mapping Annotations.

Next we will look at DML operations: how can we use the EntityManager to create, update and remove entities from the persistent store.

The next section discusses more complex Mappings in EJB 3.0 Persistence: mapping Foreign Keys, many to many relationships and intersection tables and dealing with Database Sequences to auto-generate primary key values as well as implementing a simple Optimistic Locking policy.

The last section of today’s workshop is focused on querying data through the EJB 3.0 Persistence API. We will see how we can use EJB QL to execute queries expressed in terms of our entities and attributes – instead of table and column names. Then we will also see how the Query interfaces allows us to perform Native Queries when we want to leverage special database functionality such as Oracle Analytical Functions or Scalar Subqueries. Luckily, we can still map the results of those queries to our Entities.
What we will not do in this workshop: use vendor specific implementations of EJB 3.0 Persistence API such as Toplink 10.1.3 or Hibernate 3.x. We will also not work inside EJB containers (or Servlet containers for that matter). That also means that we will not look into invoking Stored Procedures – not catered for in the EJB 3.0 Persistence specification but supported in vendor specific implementations – or into Caching solutions – also not part of the specification , however required in enterprise level conditions.
1. Getting Up and Running

This first section is about getting started with the GlassFish Reference Implementation of EJB 3.0 Persistence API. You can use an IDE – I would – (for example Eclipse or JDeveloper) but it is not necessary. Note that the IDE must support JDK 5.0.

Resources: Getting Started with EJB 3.0 Persistence out-of-container using the Reference Implementation (GlassFish) (http://technology.amis.nl/blog/?p=962) , Using GlassFish Reference Implementation of EJB 3.0 Persistence with JDeveloper 10.1.3EA (http://technology.amis.nl/blog/?p=964) 

The steps are:

· Download and Set Up Java 5 (JDK 5.0/JRE 5.0)

· Download and Set Up GlassFish

· Create Entities - POJOs with annotations that link them to database objects

· Create a Business Service class that provides Entitiy Services (like an out-of-container Session Bean)

· Create a Client that leverages the Business Service to do stuff 

· Run Application 

Download and Set Up Java 5 (JDK 5.0/JRE 5.0)

This step can probably be skipped – if you are using Eclipse 3.1 or JDeveloper 10.1.3 with JDK 5, you do not need to install the JDK or JRE separately.

If you have not already set up Java 5, that is the first thing you probably should do as GlassFish (and EJB 3.0) requires Java 5.0 as JRE. Go to the Sun Downloadsite. I downloaded JDK 5.0 Update 6. Run the installer. It is probably convenient to add the JDK50_HOME\bin directory to the PATH environment variable - to ensure that when you type java or javac on the command prompt, it actually refers to JDK 5.0. In my case, %PATH% now starts with: C:\Java\jdk1.5.0_06\bin.

You can check whether you are using the correct JDK by typing java -version on the command prompt. It should return with something like: 

java version "1.5.0_06"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)
Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode, sharing)

Download and Set Up GlassFish

GlassFish can be found at the GlassFish project page on dev.java.net. There is no formal Production Release to be downloaded. You can find milestones, promoted builds and nightly builds. It is clear that GlassFish is still very much on the move. For getting started, you do not need the absolute latest features and you also do not need production level robustness, so I suggest - as I did - that you download one of the promoted builds. Click on the Download Now button and pick the latest promoted build. In my case that was promoted binary build 21 december 2005 (60Mb). 

To install do the following:

1. save the downloaded jar file in c:\glassfish

2. open a command window and navigate to c:\glassfish

3. type in: java -Xmx256m -jar glassfish-installer-9.0-b32.jar

4. type in: C:\glassfish\glassfish\lib\ant\bin\ant -f setup.xml 

On the first run of step 4, I learned from the feedback that my port 8080 was already used, so I went into the setup.xml file to change the instance.port property to 8085. In this setup.xml file - in $GlassFish_HOME, which was in my case c:\glassfish\glassfish - you can find other properties to specify port and username/password for the GlassFish admin-console, imq, orb and https port numbers as well as the default domain name. Unless you have port-conflicts, you do not need to change anything in this file.

Note: now we could try out GlassFish as Application Server. We do not need this for this EJB 3.0 Persistence API Workshop though, so let’s not.

Create Entities - POJOs with annotations that link them to database objects

Let’s go find out about out-of-container persistence with EJB 3.0. By the way, this is described for Glassfish on: GlassFish Project - Entity Persistence Support. 

We will create two extremely simple POJOs, that we decorate with EJB 3.0 annotations to instruct the EJB 3.0 EntityManager about mapping them to database tables. Note: this is really the simplest set of annotations, just to get the show going. We will make use of the ALS0# schema - where # is a number from 0 to 9 – which will be assigned to you by the instructor. This schema is to be found in the LAB database at host vamisnt02.amis.nl, port 1521 and SERVICE_NAME is LAB.
The ALS (AMIS Library System) schema is our venerated demo system that consists of tables ALS_BOOKS, ALS_PUBLISHERS, ALS_AUTHORS and ALS_AUTHORSHIPS:

[image: image1.png]
package nl.amis.ejb30.als;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="ALS_AUTHORS")

public class Author implements Serializable {

    private String biography;

    private String countryOfBirth;

    private String countryOfLiving;

    private String firstName;

    private Long id;

    private String initials;

    private String lastName;

    private String locationInCountry;

    public Author() {

    }

    public Author(Long id) {

        this.id = id;

    }

    @Column(name="BIOGRAPHY")

    public String getBiography() {

        return biography;

    }

    public void setBiography(String biography) {

        this.biography = biography;

    }

    @Column(name="COUNTRY_OF_BIRTH")

    public String getCountryOfBirth() {

        return countryOfBirth;

    }

    public void setCountryOfBirth(String countryOfBirth) {

        this.countryOfBirth = countryOfBirth;

    }

    @Column(name="COUNTRY_OF_LIVING")

    public String getCountryOfLiving() {

        return countryOfLiving;

    }

    public void setCountryOfLiving(String countryOfLiving) {

        this.countryOfLiving = countryOfLiving;

    }

    @Column(name="FIRST_NAME")

    public String getFirstName() {

        return firstName;

    }

    public void setFirstName(String firstName) {

        this.firstName = firstName;

    }

    @Id

    @Column(name="ID", nullable=false)

    public Long getId() {

        return id;

    }

    public void setId(Long id) {

        this.id = id;

    }

    @Column(name="INITIALS")

    public String getInitials() {

        return initials;

    }

    public void setInitials(String initials) {

        this.initials = initials;

    }

    @Column(name="LAST_NAME")

    public String getLastName() {

        return lastName;

    }

    public void setLastName(String lastName) {

        this.lastName = lastName;

    }

    @Column(name="LOCATION_IN_COUNTRY")

    public String getLocationInCountry() {

        return locationInCountry;

    }

    public void setLocationInCountry(String locationInCountry) {

        this.locationInCountry = locationInCountry;

    }

}
and its companion Publisher:

package nl.amis.ejb30.als;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="ALS_PUBLISHERS")

public class Publisher implements Serializable {

    private Long id;

    private String locationInCountry;

    private byte[] logo;

    private String name;

    private String website;

    public Publisher() {

    }

    public Publisher(Long id) {

        this.id = id;

    }

    @Id

    @Column(name="ID",  nullable=false)

    public Long getId() {

        return id;

    }

    public void setId(Long id) {

        this.id = id;

    }

    @Column(name="LOCATION_IN_COUNTRY")

    public String getLocationInCountry() {

        return locationInCountry;

    }

    public void setLocationInCountry(String locationInCountry) {

        this.locationInCountry = locationInCountry;

    }

    @Column(name="LOGO")

    public byte[] getLogo() {

        return logo;

    }

    public void setLogo(byte[] logo) {

        this.logo = logo;

    }

    @Column(name="NAME")

    public String getName() {

        return name;

    }

    public void setName(String name) {

        this.name = name;

    }

    @Column(name="WEBSITE")

    public String getWebsite() {

        return website;

    }

    public void setWebsite(String website) {

        this.website = website;

    }

}
Provide the persistence.xml file that links Entities (or Domain Classes or POJOs) to a database connection

The crucial element that links the annotated classes to a specific database in the case of out-of-container persistence is the persistence.xml. This file is read upon instantation of the EntityManagerFactory. It must be located in the classes/META-INF directory (or in one of the jar-files on the classpath).

In the persistence.xml file, a Persistence Unit is specified, a bundle of Entities that are mapped to the same Database Connection. In this practice, persistence.xml maps to tables in the LAB Oracle database, more specifically the ALS0# schema in that database:

<persistence xmlns="http://java.sun.com/xml/ns/persistence">
    <persistence-unit name="AlsPU">
        <!– Provider class name is required in Java SE –>
        <provider>oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider</provider>
        <!– All persistence classes must be listed –>
        <class>nl.amis.ejb30.als.Publisher</class>
        <class>nl.amis.ejb30.als.Author</class>
        <properties>
            <!– Provider-specific connection properties –>
            <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
            <property name="jdbc.connection.string" value="jdbc:oracle:thin:@vamisnt02.amis.nl:1521:LAB"/>
            <property name="jdbc.user" value="ALS0#"/>
            <property name="jdbc.password" value="ALS0#"/>
            <!– Provider-specific settings –>
            <property name="toplink.logging.level" value="INFO"/>
        </properties>
    </persistence-unit>
</persistence> 

Note: you can change the toplink.logging.level (for example to FINE) to see additional logging details, such as the actual SQL statements that are executed by the EntityManager implementation.

The provider element set up in this file makes use of oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider. That is the default GlassFish reference implementation EntityManagerFactory implementation. Not an Oracle specific class. Although of course it is very similar to the EMF that Oracle ships as part of its Toplink commercial offering. 

Create a Business Service class that provides Entitiy Services (like an out-of-container Session Bean)

In order to isolate our application from persistency details, we implement a Business Service that the application can talk to. This LibraryService class provides a number of Publisher and Author related services, that are internally implemented using an EJB 3.0 EntityManager. Initially that number is one: we can retrieve a list of all Publishers and all Authors in our database. The LibraryService class is very much like the SessionBean you would create for in-container deployment. It looks like this:

package nl.amis.ejb30.als;

import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;

import javax.persistence.Persistence;

public class LibraryService {

    public LibraryService() {

        EntityManagerFactory emf = 

            Persistence.createEntityManagerFactory("AlsPU");

        // create EntityManager

        EntityManager em = emf.createEntityManager();

        this.setEntityManager(em);

    }

    private EntityManager _entityManager;

    public EntityManager getEntityManager() {

        return _entityManager;

    }

    public void setEntityManager(EntityManager entityManager) {

        _entityManager = entityManager;

    }

    public List<Publisher> findAllPublishers() {

        return getEntityManager().createQuery("select object(o) from Publisher o").getResultList();

    }

    public Publisher findPublisher(Long id) {

        return getEntityManager().find(Publisher.class, id);

    }

    public List<Author> findAllAuthors() {

        return getEntityManager().createQuery("select object(o) from Author o").getResultList();

    }

    public Author findAuthor(Long id) {

        return getEntityManager().find(Author.class, id);

    }

}
Create a Client that leverages the Business Service to do stuff 

To test or explore the functionality of our LibraryService, we create a simple Service Consumer, a stand-alone J2SE application - in fact nothing more than a single MAIN method- that calls upon the LibraryService to invoke various services. The Client browses through all Authors and writes their names to the System output. 

package nl.amis.ejb30.als;

import java.util.Collection;

public class LibraryClient {

    public LibraryClient() {

    }

    public static void main(String[] args) {

        LibraryService library = new LibraryService();

        System.out.println("List all Authors:");

        Collection<Author> authors = library.findAllAuthors();

        for (Author author : authors) { 

          System.out.println(author.getFirstName()+"  "+author.getLastName());

        }        

        System.out.println("List all Publishers:");

        Collection<Publisher> publishers = library.findAllPublishers();

        for (Publisher publisher : publishers) { 

          System.out.println(publisher.getName());

        }        

    }

}
 

Run Application

The application looks now as follows on the file system: 

[image: image2.png]
The following statement on the commandline suffices to run the nl.amis.ejb30.als.LibraryClient class’s main method in an EJB 3.0 persistence context. 

 java -javaagent:c:\glassfish/glassfish/lib/toplink-essentials-agent.jar  -classpath C:\glassfish\ejb30_se\se1\classes;C:\glassfish\glassfish\lib\javaee.jar;
C:\glassfish\glassfish\lib\toplink-essentials-agent.jar;C:\glassfish\glassfish\lib\toplink-essentials.jar;C:\jdev10_1_3_EA1\jdbc\lib\ojdbc14dms.jar;
C:\jdev10_1_3_EA1\jdbc\lib\orai18n.jar;C:\jdev10_1_3_EA1\jdbc\lib\ocrs12.jar;C:\jdev10_1_3_EA1\diagnostics\lib\ojdl.jar;
C:\jdev10_1_3_EA1\lib\dms.jar nl.amis.ejb30.als.LibraryClient

This statement involes two sets of jar-files: first the jar-files javaee.jar, toplnk-essentials-agent.jar, toplink-essentials.jar - these are the libraries that are part of the GlassFish reference implementation of EJB 3.0 Persistence. The second bunch, ojdebc14dms.jar, orai18n.jar, ocrs12.jar, dms.jar and ojd1.jar, is used because of the Oracle JDBC Driver. These would be replaced when you use a different database driver. 

Note: you need to have JDK or JRE 5.0 on the PATH. Note2: in this case, I make use of the OracleDriver to connect to the database, hence the references to Oracle specific JARs. When connecting to other databases using other drives all JARs in the C:\jdev10_1_3_EA1\jdbc\lib\ directory would be replaced. Note 3: Even though the use of toplink related JARs may sound Oracle specific, in this case they are the JARs from the Reference Implementation- open source and freely available. The outcome of this command looks like this:

[image: image3.png]
It turns out to be very straightforward to get EJB 3.0 Persistence to work, outside of a container. The concepts are - not surprisingly- pretty familiar: you create POJO Domain Objects, you specify how they map to table and columns and you make use of some sort of session or service or manager object to invoke persistency services. This is no different from frameworks like Hibernate or Toplink. From what I have seen already from the more advanced mapping facilities in EJB 3.0, I am pretty sure we can most of the persistency functionality we need. Not all of it, but then again, no framework provides all I need or desire.

It is important to note that if we were to use a different EJB 3.0 Persistence Implementation, for example Hibernate or Toplink instead of GlassFish RI, we would not have had to change any code. None of the classes, neither the domain classes nor the LibraryService class, would be any different. The only change would be in the persistence.xml configuration file.

The importance of EJB 3.0 Persistence lies not so much in what it adds in ORM functionality: Hibernate, Toplink and other provide and have provided for years what is in EJB 3.0 Persistence. The real importance is in the fact that the same way of specifying the mapping and invoking the Persistence Services can be used both inside and outside EJB containers and across ORM frameworks! 
Porting applications - not just developers - between implementation should also become much simpler. As long as you stick to the EJB 3.0 standard set of annotations and services, the application should be perfectly portable between implementations. And of course, portable between in- and out-of container, if nothing else at least for unit-testing. And you can start developing an application for stand-alone, J2SE deployment, and decide later on to deploy inside a container, as proper EJBs in a distributed deployment setting.

Note: Setting up JDeveloper with GlassFish RI of EJB 3.0

See blog article http://technology.amis.nl/blog/?p=964 for detailed instructions on configuring JDeveloper 10.1.3. The most important steps probably are:

Our first challenge is to set up a new JDeveloper Workspace and Project for our EJB 3.0 Persistence application, using only the GlassFish libraries, no Oracle specific libraries. The steps are:

Open JDeveloper 10.1.3EA. Create a new application - I call it ejb30_se. Select No Template for the Application Template. Press OK. Create a project. I called it: hrmPersistence.

Now it starts to get interesting: go to Project Properties - for example from the Project Node, rmb menu. Go to the Run/Debug tab and press on Edit for the Default Run Configuration.

[image: image4.jpg]
There are three important things to do on this Edit Configuration Tab: set the Virtual Machine to Client. This has to do with the javaagent option that we will set next: in the Java Options input field, enter: -javaagent:.\toplink-essentials-agent.jar. In the Run Directory enter the $Glassfish_Home\lib directory.
 [image: image5.jpg]
Next, go to the Libraries Tab. Here we specify which jars to include on the Classpath when we compile and run our application. The first three jars are taken from the GlassFish installation and represent the Reference Implementation for the EJB 3.0 javax.persistence interfaces. Oracle JDBC is a built in JDeveloper library with jars for the Oracle (JDBC) Driver.

[image: image6.jpg]
The blog article shows how we could also have generated most of the code and the annotations for the Entities Author and Publisher, using a wizard for CMP Entity Beans from Tables in JDeveloper 10.1.3 (very similar to the Dali plugin for Eclipse).

Note: Setting up Eclipse 3.1 with GlassFish RI of EJB 3.0

We want to create a new Eclipse project in which we will work with EJB 3.0 Persistence and more specifically the GlassFish implementation.

Create a new Eclipse Java Project. 

[image: image7.png]
Set the JDK Compliance to (Java) 5.0:

[image: image8.png]
Add the following libraries: 

javaee.jar, toplink-essentials.jar (from the GlassFish_Home\lib directory) and dms.jar, ocrs12.jar and ojdbc14.jar (from an Oracle Client or JDBC installation).

The first three jars are taken from the GlassFish installation and represent the Reference Implementation for the EJB 3.0 javax.persistence interfaces. The other jars are only required when using the Oracle JDBC driver – they can be replaced with similar jars for any other JDBC driver.

[image: image9.png]
In order to run the EJB 3.0 Persistence application correctly, we have to create some run-options. 

When we have created an application – a class with a main – like LibraryClient, we can set these options. From the context menu on the project, select Run As and Run. Now we can set the options for when running the project.
[image: image10.png]
Go to the Arguments tab in the Run wizard and set the correct VM arguments: -javaagent:GLASSFISH_HOME/lib/toplink-essentials-agent.jar.
[image: image11.png]
The Library application could look something like this:
[image: image12.png]
Note that – obviously – the code itself is the same in the plain JDK, JDeveloper 10.1.3 and Eclipse.
2. Data Manipulation through the EntityManager API
This second section zooms in on Data Manipulation operations. How to create new Entities and make them persistent. And: how to update (persistently) existing Entities as well as how to remove from the persistent store an existing Entity.

The basic DML operations Insert, Update and Delete are provided by the EntityManager API. However, they are called differently – of course. The persist() method on the EntityManager for example is used for persisting a (new) entity (instance), effectively inserting a new record into the underlying table. The merge() operation results in an Update and remove()… well, work that one out for yourself. In addition to the obvious ones, the EntityManager also support refresh() – which synchronizes the entity involved with the current situation in the database. 

In this practice, we will create a new Publisher and update an existing one. Then of course we will remove the one you just created.

Persisting (new) entities

To persist – make permanent in the underlying datastore or more plainly: insert into the database – an entity, have to make use of the persist() operation offered by the EntityManager interface. However, the persist() operation cannot just be executed like that: we can only invoke the persist() operation when we have an open EntityTransaction. The transaction can be acquired from the EntityManager through the getTransaction() method. The EntityTransaction interfaces offers operations like begin(), commit() and rollback().
We will make use of all this knowledge to extend the LibraryService with the ability to make a new Publisher permanent in our database. Next we will make use of this new operation in our LibraryClient application to create and have persisted a new Publisher.

a. Extend the LibraryService class with a SavePublisher method. This method takes a Publisher object as input, and makes it permanent. The method defines the transaction – it opens and closes the transaction itself.
    public void savePublisher(Publisher publisher) {

        EntityTransaction tx = getEntityManager().getTransaction();

        tx.begin();

        getEntityManager().persist(publisher);        

        // Commit the transaction

        tx.commit();

    }

b. Extend the LibraryClient; have it use the LibraryService class’s SavePublisher method to create a new Publisher.

        Publisher publisher = new Publisher();

        publisher.setId(new Long(40));

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

c. Run the application and verify it successful completion. Check whether the new Publisher has indeed been created.

d. Note it is considered good practice by some to provide not just a saveEntity method that requires an Entity as input parameter, but instead a createEntity method that takes a some String, Long etc. parameters and returns a new Entity instance – that has been persisted as well. In terms of our Publisher Entity, that method could look something like:

public Publisher createPublisher(Long id, String name) {
     Publisher p = new Publisher();

     p.setId(id);

     p.setName(name);

     savePublisher(p);        

     return p;

}   

Add this method to the LibraryService.
Changing (attributes of) existing entities

Of course a persisted entity is not cast in stone: we may want to change its properties and persist those changes – or in SQL terms: update the table record. The EntityManager provides us with the merge() operation. This operation will operate both on an entity that we have just read from the database as well as on any object we have lying around that is not already associated with a database record. 

In the latter case, the EntityManager will instantiate an entity from the database using the primary key in the entity passed in; it will then update the freshly created entity with the attribute values in the passed in entity and update the database with those values. Finally the merge() method returns the new entity instance – not the one that was passed in.
a. Extend the LibraryService with a changePublisher() method that takes a Publisher entity as input parameter and persists its changes to the database. This method will start and complete a transaction, encapsulating that logic from the client.

    public void changePublisher(Publisher publisher) {

        EntityTransaction tx = getEntityManager().getTransaction();

        tx.begin();

        publisher = getEntityManager().merge(publisher);        

        // Commit the transaction

        tx.commit();

    }
b. Modify the LibraryClient to change the newly created Publisher: set it’s website to “www.greatbooks-inc.com” and use the changePublisher() method on the LibraryService to make this change persist(ent).

c. Right now, control of the transaction is entirely encapsulated in the LibraryService. Let’s allow the client the ability to start and end a (logical) transaction, without burdening it with knowledge about the EntityManager etc. Implement a startTransaction() and an endTransaction() method in the EntityManager:

    private EntityTransaction transaction;

    public void startTransaction() {

      transaction = getEntityManager().getTransaction();

      transaction.begin();        

    }

    public void endTransaction() {

       transaction.commit(); 

    }

Removing persistent entities 
It happens, every once in a while, that we want to kill Entities, including the removal of the corresponding database records. The EntityManager interface has the remove() method that will aid us. This method is called with the Entity we want to have removed as an input parameter. Note however that this Entity must be attached, that is: linked to the current Transaction. That is automatically achieved for entities that are queried through the EntityManager in the current transaction. For currently detached entities, we can attach them through the merge() operation.
So let’s get working. We have created a new Publisher, My Publishing House. Now we want to remove it. We happen to know it’s Id, so we can easily find it using the LibraryService.findPublisher() method and subsequently we can remove it.
a. Add a method removePublisher() to the LibraryService:

    public void removePublisher(Publisher p) {

      getEntityManager().remove(p);

    }

b. Add code to the LibraryClient that queries the Publisher we have created earlier on and then invokes the removePublisher method to get rid of the Publisher:

        // now remove the new Publishers

        library.startTransaction();

        library.removePublisher(library.findPublisher(new Long(40)));

        library.endTransaction();

c. We will now make the remove method a little more robust, to allow for removal of un-attached entities. Let’s first see the need for this robustness. Write a piece of code in the LibraryClient that creates a new Publisher – using the createPublisher method on the LibraryService – and then goes on to remove that new publisher, using the removePublihser() method:

        Publisher p = library.createPublisher(new Long(45), "Great Books Inc.");     

        // now remove the new Publisher

        library.startTransaction();

        library.removePublisher(p);

        library.endTransaction();

When you run this code, you will probably run into some sort of – not very nicely typed – Exception, boiling down to the fact that the remove method of the EntityManager cannot deal with unattached entities.

We can make our remove service handle this situation like this:

    public void removePublisher(Publisher p) {

      // note: we cannot simply pass in any object to be removed:

      // the object may not be "detached"; any object that was created or

      // retrieved by the EntityManager in the current transaction is not

      // detached; any object from outside the current transaction however is

      // considered detached. We "attach"  a detached object by "merging" it:

      // note2: if we were using an EXTENDED EntityManager, any object that

      // was retrieved at any time by the EntityManager - across Transaction

      // boundaries - would still be "attached"

      // create an attached Publisher object for the (possibly) detached p

      Publisher p2 = getEntityManager().merge(p);

      // remove the attached counterpart of the (potentially) detached p

      getEntityManager().remove(p2);

    }

Run the client application again with this new code in place. Now it should be able to remove the Great Books inc. publisher. It should even be able to deal with:

        Publisher p = library.createPublisher(new Long(50), "Great Books Inc.");     

        // now remove the new Publisher

        library.startTransaction();

        library.removePublisher( new Publisher(new Long(50)));

        library.endTransaction();

Provided of course that the Publisher entity has a constructor Publisher( Long).
EJB QL 3.0 – the new release of the Query Language – also supports bulk updates and bulk deletes. See for more details: http://www.hibernate.org/hib_docs/entitymanager/reference/en/html/batch.html#batch-direct
3. More and advanced Mapping Annotations
Thusfar we have seen a relative basic set of Mapping Annotations. There is so much more! We will look into two different categories in this section:

· references, collections, relationships, intersections, many-to-many 

· technical facilities for Optimistic Locking and Id generation (from a sequence)

Foreign Keys and Object References

What is a database without foreign key references, what is an Entity Model without relationships. We have several in our application. Let’s start with adding a new Entity: Book. 

a. Create a new class called Book. This class has a number of private properties such as id, title, publishYear and isbn. Create the properties and (have) getters and setters (generated). 

package nl.amis.ejb30.als;

import java.sql.Timestamp;

public class Book {

    private Long id;

    private String isbn;

    private Long publishYear;

    private String title;

    public Book() {

    }

    public void setId(Long id) {

        this.id = id;

    }

    public Long getId() {

        return id;

    }

    public void setIsbn(String isbn) {

        this.isbn = isbn;

    }

    public String getIsbn() {

        return isbn;

    }

    public void setPublishYear(Long publishYear) {

        this.publishYear = publishYear;

    }

    public Long getPublishYear() {

        return publishYear;

    }

    public void setTitle(String title) {

        this.title = title;

    }

    public String getTitle() {

        return title;

    }

}

b. Map the Entity Book to the table ALS_BOOKS. Map the properties to the corresponding columns.
package nl.amis.ejb30.als;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="ALS_BOOKS")

public class Book {

    private Long id;

    private String isbn;

    private Long publishYear;

    private String title;

    public Book() {

    }

    public void setId(Long id) {

        this.id = id;

    }

    @Id

    @Column(name="ID", nullable=false)

    public Long getId() {

        return id;

    }

    public void setIsbn(String isbn) {

        this.isbn = isbn;

    }

    @Column(name="ISBN")

    public String getIsbn() {

        return isbn;

    }

    public void setPublishYear(Long publishYear) {

        this.publishYear = publishYear;

    }

    @Column(name="PUBLISH_YEAR")

    public Long getPublishYear() {

        return publishYear;

    }

    public void setTitle(String title) {

        this.title = title;

    }

    @Column(name="TITLE", nullable=false)

    public String getTitle() {

        return title;

    }

}

c. Add the Book entity to the list of <class> elements in the file persistence.xml

        <class>nl.amis.ejb30.als.Book</class>
d. Add the method findAllBooks() to the LibraryService:

    public List<Book> findAllBooks() {

        return getEntityManager().createQuery("select object(o) from Book o").getResultList();

    }

e. Make use of this findAllBooks() method in our LibraryClient to list all titles of all books:
        LibraryService library = new LibraryService();

        System.out.println("List all Books:");

        Collection<Book> books = library.findAllBooks();

        for (Book book : books) { 

          System.out.println(book.getTitle());

        }        
f. Now it would be nice to see the name – and perhaps other properties - of the Publisher of each of these books. We will add a mapped relationship to our entities. First, add a new private property publisher to the Book entity; also create a getter and a setter:
    private Publisher publisher;

    public void setPublisher(Publisher publisher) {

        this.publisher = publisher;

    }

    public Publisher getPublisher() {

        return publisher;

    }

Now we will instruct the EntityManager about the mapping of this attribute. For a Many-to-One relationship we use the ManyToOne annotation:

    @ManyToOne(optional=false)

      @JoinColumn(name="pbr_id")    

    public Publisher getPublisher() {

        return publisher;

    }

This is all we need: indicate that an attribute is in fact a reference and specify which column in the table underlying this entity (ALS_BOOKS) holds the foreign key to the referenced table. Since we have already specified that Entity Publisher is mapped to table ALS_PUBLISHERS and that the attribute id mapped to column ID is the primary key, the EntityManager has all required information to perform the lookup.

Let’s modify the LibraryClient to make use of the new information we should be able to get hold of:
        System.out.println("List all Books:");

        Collection<Book> books = library.findAllBooks();

        for (Book book : books) { 

          System.out.println(book.getTitle()
                   + " published by "+book.getPublisher().getName());

        }        

If we look at the logging, we see the following SQL being performed:

[TopLink Fine]: 2006.02.07 11:00:28.944--ServerSession(12224002)--Connection(23328673)--Thread(Thread[main,5,main])--SELECT ID, PUBLISH_YEAR, ISBN, TITLE, pbr_id FROM ALS_BOOKS

[TopLink Fine]: 2006.02.07 11:00:29.265--ServerSession(12224002)--Connection(6771926)--Thread(Thread[main,5,main])--SELECT ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY FROM ALS_PUBLISHERS WHERE (ID = 1)

[TopLink Fine]: 2006.02.07 11:00:29.315--ServerSession(12224002)--Connection(23328673)--Thread(Thread[main,5,main])--SELECT ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY FROM ALS_PUBLISHERS WHERE (ID = 6)

[TopLink Fine]: 2006.02.07 11:00:29.325--ServerSession(12224002)--Connection(6771926)--Thread(Thread[main,5,main])--SELECT ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY FROM ALS_PUBLISHERS WHERE (ID = 4)

One to Many Relationships – Child Collections at the Parent

The database only knows of uni-directional references: the child or detail table holds a reference to the parent or master while the master or parent is oblivious to the fact that he is being referenced. EJB 3.0 Persistence just knows about mappings, which can be in any direction, including from master to detail. This mapping is called OneToMany. An example of that type of mapping our business case is from Publisher to the collection of books it publishes. Let’s investigate.
Add property Collection<book> bookCollection to the Publisher Entity, as well as the getter and setter method.

    private Collection<Book> bookCollection;

    public Collection<Book> getBookCollection() {

        return bookCollection;

    }

    public void setBookCollection(Collection<Book> bookCollection) {

        this.bookCollection = bookCollection;

    }

Add the OneToMany annotation:

    @OneToMany(mappedBy="publisher", cascade={CascadeType.ALL})

    public Collection<Book> getBookCollection() {

        return bookCollection;

    }

Note: here we rely on the ManyToOne that has been specified for the publisher attribute in the Book entity. We can also make an independent ManyToOne mapping in the following way:

    @OneToMany(cascade={CascadeType.ALL})

    @JoinTable(table = @Table(name = "ALS_BOOKS"), joinColumns = {

            @JoinColumn(name = "pbr_id")

        })

    public Collection<Book> getBookCollection() {

        return bookCollection;

    }

Write code in the LibraryClient to display all book titles for each Publisher:

        System.out.println("List all Publishers:");

        Collection<Publisher> publishers = library.findAllPublishers();

        for (Publisher publisher : publishers) { 

          System.out.println(publisher.getName());

          for (Book book  : publisher.getBookCollection()) { 

            System.out.println("  * "+book.getTitle());

          }         

        }        

See also: Diving deeper into EJB 3.0 Persistence with GlassFish (RI) - still out of container with details on EAGER and LAZY loading as well as the full story on ManyToOne Mapping as well as OneToMany mapping. 
DML Operations and Relationships

Even though Collections and Attributes holding an Entity reference may seem special, as a Java programmer you do not have to treat them as special. So you simply add an Entity to the Collection that represents a OneToMany relationship and when the Entity is persisted, the Entities in the collection are persisted implicitly as well.

a. Let’s create a new Book and add it to the portfolio of our new Publisher. Write the following code in the LibraryClient:

        Publisher publisher = new Publisher();

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

        System.out.println("The id of the "+publisher.getId());

        Book newbook = new Book();

        newbook.setId(new Long(99));

        newbook.setTitle( "My New Book");

        newbook.setPublisher(publisher);

        library.saveBook(newbook);

Many to Many Relationships – Intersections and EJB 3.0 Persistence

EJB 3.0 Persistence also has facilities for dealing with a many to many relationship (one that we tend to move out of our ERDs, replacing the many-to-many with an intersection entity). We do have an example at hand in our model:
[image: image13.png]
A Book can be written by one or more Authors and an Author can definitely have made contributions to more than one Book. We can decide to model this as follows:

[image: image14.png]
We do this very frequently. If the relationship itself has properties – such as in this case the type of contribution, like preface, illustration, chapter 6, proofreading etc. – it is a very valid, functionally driven re-modeling. Another motive for doing this, is the inability of many tools and frameworks – and developers ? – to deal with Many-to-Many relationships. 
EJB 3.0 Persistence knows how to work with such relationships. Here is how:

a. Create a new Entity, Author, with properties firstName, lastName and id, mapped to table ALS_AUTHORS and columns FIRST_NAME, LAST_NAME and ID.

package nl.amis.ejb30.als;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="ALS_AUTHORS")

public class Author implements Serializable {

    private String firstName;

    private Long id;

    private String lastName;

    public Author() {

    }

    public Author(Long id) {

        this.id = id;

    }

    @Column(name="FIRST_NAME")

    public String getFirstName() {

        return firstName;

    }

    public void setFirstName(String firstName) {

        this.firstName = firstName;

    }

    @Id

    @Column(name="ID", nullable=false)

    public Long getId() {

        return id;

    }

    public void setId(Long id) {

        this.id = id;

    }

    @Column(name="LAST_NAME")

    public String getLastName() {

        return lastName;

    }

    public void setLastName(String lastName) {

        this.lastName = lastName;

    }

}

b. Add entity Author to the persistence.xml file:

        <class>nl.amis.ejb30.als.Author</class>

c. We will now add a collection called authors to the Book entity:

    private Collection<Author> authors;

    public Collection<Author> getAuthors() {

        return this.authors;

    }

    public void setAuthors(Collection<Author> authors) {

        this.authors = authors;

    }

d. And at this moment, we will specify that the authors collection is to be populated by the EntityManager through the ManyToMany references to be found in the ALS_AUTHORSHIPS intersection-table:

    @ManyToMany(cascade=CascadeType.ALL)

    @JoinTable(table = @Table(name = "als_authorships"), joinColumns = {

           @JoinColumn(name = "bok_id")

       }, inverseJoinColumns = {

           @JoinColumn(name = "atr_id")

       })

Note how we specify the name of the intersection table (ALS_AUTHORSHIPS) and the names of the columns in that table (bok_id and atr_id) that have references to the two entities involved. With joinColumn, we specify the column in the Intersection Table that refers to the owning Entity (in this case the Book entity as it is this entity that has the authors collection); it is assumed here that bok_id will refer to the primary key column in the table underlying the Book entity. With inverseJoinColumns, we specify the columns in the intersection table that refer to the table-at-the-other-end (ALS_AUTHORS). Again it is assumed that these columns – or column in this case – refer to the primary key column.
e. With this in place, we can once again go to the LibraryClient and display the names of the authors along with the titles of the books:

        System.out.println("List all Books:");

        Collection<Book> books = library.findAllBooks();

        for (Book book : books) { 

          System.out.println(book.getTitle()+ " published by "+book.getPublisher().getName());

          for (Author author: book.getAuthors()) {

              System.out.println(" * "+ author.getFirstName()+ " " + author.getLastName());

          }

        }        
f. The reverse annotation – a Books collection in the Author entity – can be created as follows:

    private Collection<Book> books;

    @ManyToMany(cascade=CascadeType.ALL)

    @JoinTable(table = @Table(name = "als_authorships"), joinColumns = {

           @JoinColumn(name = "atr_id")

       }, inverseJoinColumns = {

           @JoinColumn(name = "bok_id")

       })

    public Collection<Book> getBooks() {

        return this.books;

    }

    public void setBooks(Collection<Book> books) {

        this.books = books;

    }

Now you can also try to write the code for retrieving all Authors and displaying a list of their books.

Also see: EJB 3.0 Persistence - ManyToMany relations or the objectification of the intersection table
Primary Key value generation

We have seen how we had to provide a value for the Id attribute in new Publishers. However, there is a database sequence in the ALS database schema that we are using for this application; it is called ALS_PBR_SEQ and it is a native Oracle Database Sequence. 
EJB 3.0 Persistence API knows about sequences used for generating primary key values. Not just Oracle Database Sequence but also Auto Increment strategy using an Identity type column and a Table Generator using a special table set up to provide sequence values. Because of the locks such a strategy may place on the table record representing a sequence, this may prove a very bottleneck-like solution. Also see: http://blogs.sun.com/roller/page/pblaha?entry=primary_key_generation_in_ejb  and http://www.jroller.com/page/raghukodali/?anchor=primary_key_generation_in_ejb
and in particular http://trycatchfinally.blogspot.com/2006/01/experiments-with-ejb-30-id-annotation.html 

a. We will adopt the Sequence strategy for the id attribute of the Publisher Entity. Simply add an annotation specifying that this attribute’s value is generated from the ALS_PBR_SEQ sequence:

Add these two imports:

import static javax.persistence.GeneratorType.SEQUENCE;

import javax.persistence.SequenceGenerator;

Change the @Id annotation into:

    @Id(generate=SEQUENCE,generator="ALS_PBR_SEQ")

    @SequenceGenerator(name="PUBLISHER_ID_GENERATOR", sequenceName=" PUBLISHER_ID_GENERATOR")     

    @Column(name="ID",  nullable=false)

    public Long getId() {

        return id;

    }

Note: for Oracle database sequences – that have their initial value set up by the database – the initial value attribute that can be specified on the SequenceGenerator annotation, is completely ignored. 
b. Now remove the code in the LibraryClient that explicitly sets the value for the id attribute: we can leave that now to the EntityManager. Add a line of code that writes the new Publisher’s id value to the system output right after the call to save the Publisher:

        Publisher publisher = new Publisher();

       //   publisher.setId(new Long(44));

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

        System.out.println("The Id for this new Publisher "+publisher.getId());
If you toggle on Fine logging in the persistence.xml file, you will see the next lines:

[TopLink Fine]: 2006.02.06 01:02:05.076--ServerSession(21414356)--Connection(6783657)--Thread(Thread[main,5,main])--SELECT ALS_PBR_SEQ.NEXTVAL FROM DUAL

[TopLink Fine]: 2006.02.06 01:02:05.136--UnitOfWork(7364874)--Connection(25966201)--Thread(Thread[main,5,main])--INSERT INTO ALS_PUBLISHERS (ID, WEBSITE, NAME, LOGO, LOCATION_IN_COUNTRY) VALUES (2, NULL, 'My Publishing House', NULL, NULL)

[

Optimistic Locking and the @Version annotation

With @Version we can indicate that a specific Attribute - mapped to a database column - is to be used to verify whether an Optimistic Lock can be acquired. So by comparing the value of that Attribute to the current value of the underlying database column, we - that this: the EntityManager - can find out whether the record has been changed since we retrieved it and if not, we get our optimistic lock. Sounds very useful! 

Of course we also require the EntityManager to update the attribute value and the database column when we update the Entity, to indicate to other users of the same Entity that they have an old version of the Entity. 

See for more details: EJB 3.0 Persistence - using the @Version annotation for Optimistic Locking - in the GlassFish Reference Implementation (http://technology.amis.nl/blog/?p=977)

The idea behind Optimistic Locking is that when we attempt to update the database from our client side Entities, we should only do so if the records that we want to update have not been updated by anyone else since the time that we read the data. This prevents us from overwriting changes made by others – and indirectly us from being beaten up by those others. So Optimistic Locking is a fine thing. Pessimistic locking – the alternative – entails: lock every record that you read from the database on the off-chance that perhaps you will be changing it. You can probably work out for yourself that pessimistic locking has challenges of its own.

To try out this feature, it’s best to add a new column to the table that we want to implement Optimistic Locking for, let’s say ALS_PUBLISHERS.
a. Add a column VERSION number(10) to table ALS_PUBLISHERS (DDL statement: alter table ALS_PUBLISHERS add (version number(10));)

b. Add a property “private Long version;” to Entity Publisher

c. Add a getter and a setter for this property

d. Map the property to the version column (since the names of both Entity Attribute and Column are the same, all we need to do is specify the @Column annotation). Now also specify that this attribute is used for implementing the Optimistic Locking policy. You do this by adding the @Version annotation:

@Version

@Column

public Long getVersion() {…

e. Try it out: run the client again and see whether the Version column is populated. You can toggle on logging to see lines like these being printed to the console:
[TopLink Fine]: 2006.02.07 07:33:43.573--UnitOfWork(20214052)--Connection(24387997)--Thread(Thread[main,5,main])--INSERT INTO ALS_PUBLISHERS (ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY) VALUES (15, 1, NULL, NULL, 'My Publishing House', NULL)
f. This only shows that the EntityManager maintains the value of the VERSION column on insert. When we have the LibraryClient first create and then update a Publisher, we get a better feeling for what is happening:

        Publisher publisher = new Publisher();

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

        System.out.println("Its version is set to "+publisher.getVersion());

        publisher.setWebsite("www.greatbooks-inc.com");

        library.changePublisher(publisher);

The logging now shows the following:

[TopLink Fine]: 2006.02.07 07:33:43.563--ServerSession(23047631)--Connection(101492)--Thread(Thread[main,5,main])--SELECT ALS_PBR_SEQ.NEXTVAL FROM DUAL

[TopLink Fine]: 2006.02.07 07:33:43.573--UnitOfWork(20214052)--Connection(24387997)--Thread(Thread[main,5,main])--INSERT INTO ALS_PUBLISHERS (ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY) VALUES (15, 1, NULL, NULL, 'My Publishing House', NULL)

Its version is set to 1

[TopLink Fine]: 2006.02.07 07:33:43.593--UnitOfWork(25942001)--Connection(6659511)--Thread(Thread[main,5,main])--UPDATE ALS_PUBLISHERS SET WEBSITE = 'www.greatbooks-inc.com', VERSION = 2 WHERE ((ID = 15) AND (VERSION = 1))

Its version is set to 1

Note how the EntityManager will not only update the VERSION column to 2, it also includes in its where condition the check for VERSION=1. If someone else would have updated the Publisher – using the same Version based Optimistic Locking scheme – the VERSION column would no longer be equal to 1 and the update would effectively do nothing.

Note: The last line should slightly worry you. The version attribute of our Publisher Entity is not updated, even though the database record and its VERSION value are updated from that Publisher Entity. The consequence is that when we run the following piece of code, we will have ourselves an exception:

        Publisher publisher = new Publisher();

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

        System.out.println("The Id for this new Publisher "+publisher.getId());

        System.out.println("Its version is set to "+publisher.getVersion());

        publisher.setWebsite("www.greatbooks-inc.com");

        library.changePublisher(publisher);

        System.out.println("Its version is set to "+publisher.getVersion());

        // now update the Publisher again   

        publisher.setWebsite("www.evengreaterbooks-inc.com");

        library.changePublisher(publisher);

        System.out.println("Its version is set to "+publisher.getVersion());

From the logging:

[TopLink Fine]: 2006.02.07 07:33:43.573--UnitOfWork(20214052)--Connection(24387997)--Thread(Thread[main,5,main])--INSERT INTO ALS_PUBLISHERS (ID, VERSION, WEBSITE, LOGO, NAME, LOCATION_IN_COUNTRY) VALUES (15, 1, NULL, NULL, 'My Publishing House', NULL)

The Id for this new Publisher 15

Its version is set to 1

[TopLink Fine]: 2006.02.07 07:33:43.593--UnitOfWork(25942001)--Connection(6659511)--Thread(Thread[main,5,main])--UPDATE ALS_PUBLISHERS SET WEBSITE = 'www.greatbooks-inc.com', VERSION = 2 WHERE ((ID = 15) AND (VERSION = 1))

Its version is set to 1

Exception in thread "main" Local Exception Stack: 

Exception [TOPLINK-5010] (Oracle TopLink Essentials - 10g release 4 (10.1.4.0.0) (Build 051215Dev)): oracle.toplink.essentials.exceptions.OptimisticLockException

Exception Description: The object [nl.amis.ejb30.als.Publisher@e99681] cannot be merged because it has changed or been deleted since it was last read. {3}Class> nl.amis.ejb30.als.Publisher


at oracle.toplink.essentials.exceptions.OptimisticLockException.objectChangedSinceLastMerge(OptimisticLockException.java:144)


at oracle.toplink.essentials.internal.sessions.MergeManager.mergeChangesOfCloneIntoWorkingCopy(MergeManager.java:404)

The reason for this: the version attribute of the entity is not set during the insert or update operations; the new value is set in the VERSION column in the database, however the version attribute is not updated. The way to resolve this situation is:
        Publisher publisher = new Publisher();

        publisher.setName("My Publishing House");

        library.savePublisher(publisher);

        System.out.println("The Id for this new Publisher "+publisher.getId());

        System.out.println("Its version is set to "+publisher.getVersion());

        publisher.setWebsite("www.greatbooks-inc.com");

        library.changePublisher(publisher);

        System.out.println("Its version is set to "+publisher.getVersion());

        // this "refresh" is used to update the version attribute  

        // without it, the version attribute will differ from the value in 
        // the VERSION column which will cause the update to fail!

        publisher = library.findPublisher(publisher.getId());

        publisher.setWebsite("www.evengreaterbooks-inc.com");

        library.changePublisher(publisher);

        System.out.println("Its version is set to "+publisher.getVersion());

4. EJB QL – The EJB 3.0 Persistence API Query Language

EJB QL has been around since EJB 2.0. It has not always had a very good press. However, the 3.0 release brings a much richer Query Language, with support for many good things like subqueries, richer set of functions, support for data types like Date and Timestamp, proper aggregation and access to NativeQuery functionality that allows us to execute queries in native (database specific) SQL in terms of tables and columns rather than entities and attributes), making full use of features like Analytical Functions, Scalar Subqueries, In Line views, User Defined PL/SQL Functions and the Oracle Connect By functionality.
In this section, we will do little querying.

A query is performed using the Query interface. A Query instance can be acquired from the EntityManager. We have seen the first examples of the query interface in the first incarnation of our LibraryService:


    public List<Book> findAllBooks() {

        return getEntityManager().createQuery("select object(o) from Book o").getResultList();

    }

While this query does nothing spectacular, it is interesting all the same: we specify the query in terms of Entities. We do not refer to any table- or column names. The results of the query are objects, Book entities in this case. So SQL free – and certainly database specific SQL implementation free – query writing. 

a.  Of course the EJB QL is much richer than what this example can show. Let’s spice things up just a little with a simple query to find all Books with Java in the title:
    public List<Book> findAllJavaBooks() {

        return getEntityManager().createQuery("select object(o) from Book o where lower(o.title) like '%java%'") .getResultList();

    }

b.  And now for Publishers who publish a book with Java in the title:

SELECT object(o) from Publisher o, IN (o.bookCollection) AS allBooks WHERE lower(allBooks.title) like '%java%'
c. Look for all Publishers without any Books in their Portfolio:

SELECT object(o) from Publisher o where o.bookCollection IS EMPTY
d. Find the books that have an author whose firstname is Steve:

SELECT b from Book AS b, in (b.authors) AS author where author.firstName ='Steve'

e.  Find all authors who have worked on a book that was published by a Publisher with a website whose url contains the string man
    public List<Author> findManAuthors() {

        return getEntityManager().createQuery("select object(o) from Author AS o JOIN o.books As b join b.publisher p where lower(p.website) like '%man%' ").getResultList();

    }

f. Let’s do even more object navigation stuff in our query. Let’s try to find a Publisher who publishes a book that has been co-written by an author who also participated on a book that has Oracle in the title:
SELECT object(p) FROM Publisher AS p, in (p.bookCollection) AS books, in (books.authors) authors , in (authors.books) books2 WHERE lower(books2.title) like '%oracle%'

g. Until now, each query has returned only single-flavored entities: all results are either Books or Publishers or Authors. However, EJB QL 3.0 can also return multiple entity types in a single query. So for example, in the last query, we can show not only the Publisher but also the Author in question.
        public List findSpecialPublishers() {

            return getEntityManager().createQuery("SELECT object(p), object(authors)  from Publisher AS p, in (p.bookCollection) AS books, in (books.authors) authors , in (authors.books) books2"+

            " where lower(books2.title) like '%oracle%'  ").getResultList();

        }

In the LibraryClient we can deal with the result of this query as follows:

        System.out.println("List all Publishers that have published a book for an author who has written a book with oracle in its name:");

        Collection publishers = library.findSpecialPublishers();

        for (Iterator iterator = publishers.iterator(); iterator.hasNext(); ){

           Object[] resultElement = (Object[])iterator.next();

           Publisher publisher = (Publisher)resultElement[0];

           System.out.println(publisher.getName());

           Author author = (Author)resultElement[1];

           System.out.println(author.getLastName());

        }        

EJB QL queries not only return Entities. They can also return singular, scalar values. They can even return objects that are constructed as part of the query. Something like:

    public Object findBookSummary() {

        return getEntityManager().createQuery("SELECT max(b.publishYear), min(b.publishYear), count(b) from Book b").getSingleResult();

    }

The results can be used in the client like this:

        Object[] summary = (Object[])library.findBookSummary();

        System.out.println("Most recent book is from "+summary[0]);

        System.out.println("Oldest book is from "+summary[1]);

        System.out.println("There are "+summary[2]+" books altogether.");
h. So far, all queries have been fixed: they have no variable parts. In reality, queries often depend on the situation. The search criteria entered by the user for example. This situational context is fed into the query using Named Parameters. Let’s make the query for all Java books a little more generic by allowing the subject we are looking for to be passed in as a parameter:

    public List<Book> findAllBooksOn( String subject) {

        Query query = getEntityManager().createQuery("select object(o) from Book o where lower(o.title) like :subject") ;

        query.setParameter("subject", '%'+subject+'%');

        return query.getResultList();

    }
The client can make use of this method like this:

        Collection<Book> books = library.findAllBooksOn("xml");

        for (Book book : books) { 

          System.out.println(book.getTitle()+ " published by "+book.getPublisher().getName());

          for (Author author: book.getAuthors()) {

              System.out.println(" * "+ author.getFirstName()+ " " + author.getLastName());

          }

        }  

i. Queries can be defined dynamically, as we have just seen, by passing a string that contains an EJB QL statement. However, queries can also be pre-defined using annotations. We can build up a library of queries by specifying these queries in the Entity.
For example, a NamedQuery to find all books on Java can be specified as follows in the Entity Book:
import javax.persistence.NamedQuery;

@Entity

@Table(name="ALS_BOOKS")

@NamedQuery(name="javaBooks", 

 queryString="select object(o) from Book o where lower(o.title) like '%java%'")

public class Book {

…
To make use of a named query, we can do something like this:

    public List<Book> findJavaBooks() {

        return getEntityManager().createNamedQuery("javaBooks").getResultList();

    }

j.  Our last Query related subject in this section is the Native Query. When all else fails, when EJB QL does not give us what we want and need, we can resort to the Native Query. This feature allows us to write plain SQL that is passed straight through to the underlying database. It breaks database portability – as we do not use the EJB QL that is translated into database specific SQL. But the whole point is that we want to leverage what our specific database can do – and EJB QL cannot do for us. For Oracle databases, you think of features like Analytical Functions, Scalar Subqueries, Table Functions, Connect By operations, User Defined Aggregations etc.

This next example leverages the Regular Expression feature in the Oracle 10g database:

    public List<Book> findAllBooksOn( String subject) {

        Query q = getEntityManager().createNativeQuery("select * from als_books where regexp_like(title,'"+subject+"{1}','ci')", Book.class);

        return q.getResultList();

    }

As an example, let us query the most recent books for each Publisher
    public List<Book> findRecentBooks() {

      return getEntityManager().createNativeQuery(
           "select * from 
                     ( select book.title, book.id, book.publish_year, 
                       book.pbr_id
                       ,      row_number() over ( partition by pbr_id 
                                                  order by publish_year 

                                                  ,        publish_month desc
                                                ) rn 
                       from ALS_BOOKS book
                      ) 
            where rn =1  ", nl.amis.ejb30.als.Book.class).getResultList();

    }

The Client could use this service like this:

        Collection<Book> books = library.findRecentBooks();

        for (Book book : books) { 

          System.out.println(book.getTitle()+ "published in "+book.getPublishYear());

          for (Author author: book.getAuthors()) {

              System.out.println(" * "+ author.getFirstName()+ " " + author.getLastName());

          }

        }  

NativeQueries can also be specified using annotations. Furthermore, we can define special SqlResultSetMappings that instruct the EntityManager on mapping the result of a Native Queries onto Entities and other objects. This is used when a native query returns more than a single Entity in each row.
Note: I was under the impression that NativeQueries can take named parameters. However, when I tried to do so, I failed quite miserably.

Resources: http://www.hibernate.org/hib_docs/entitymanager/reference/en/html/queryhql.html 
5. Using the Eclipse Dali plugin

See resources at: http://www.eclipse.org/dali/gettingstarted.html
The Dali plugin

To download and install:

· Install Eclipse 3.1.x

· Install the WTP (Web Tools Project) – get it using Eclipse Plugin Manager from http://download.eclipse.org/webtools/updates/
[image: image15.png]
· Download the Dali plugin - http://www.eclipse.org/dali/downloads.html  - and extract the zip-archive to the Eclipse home directory

· Make sure that an EJB 3.0 Persistence API implementation is available – for example Glassfish RI, Hibernate 3.0 or Toplink.

· Start Eclipse

· Follow the instruction under Note Setting up Eclipse 3.1 with GlassFish RI of EJB 3.0 earlier in this document, to create a new Java Project, with the GlassFish libraries included in the Build Path

· Switch to the "Persistence Perspective"--you don't have to but this perspective contains the views that support entity editing. 
[image: image16.png]
[image: image17.png]
· Right-click on a Java Project and choose Persistence -> Add Persistence.
[image: image18.png]
· A window opens where you have to specify the database connection to use for our Persistence Project. 
[image: image19.png]
If you do not have a database connection, you can navigate to the wizard to create one:
[image: image20.png]

· Show the Persistence Properties view – from the Window menu, pick Show View and then Other. The next window is displayed; select Persistence Properties.
[image: image21.png]
This opens a the Persistence Properties view that we will use to define the Mapping details for our Entities.

· Now that we have set up the Dali plugin – the Persistence Perspective – we can start using it to help us create Mappings. Create a new class Publisher, from File menu, New, Other – Persistence, EJB 3.0 Entity:
[image: image22.png]

Enter the package and the name of the Entity. It is created by the wizard:

[image: image23.png]
· Now select the Class. In the Persistence Properties view, you can now indicate that this class is to be mapped as Entity, to the table ALS_PUBLISHERS.
[image: image24.png]
The Dali plugin adds the @Entity and @Table annotations based on these choices:
[image: image25.png]
· Create the properties Id, Name and Website in Class Publisher
[image: image26.png]
· Use the option Source, Generate Getters and Setters to create the get- and set-methods for these properties.

· Now select the getId method in the source editor or in the Persistence Outline. 
[image: image27.png]
We can now use the Dali Persistence Properties view to define the mapping for this getter:
[image: image28.png]
In this way, Dali is very helpful in creating the mapping annotations. Note that we can still manually edit the annotations as well.

What Dali currently does not do, is create a class and its properties based on a table – something that JDeveloper can do for us.
· Where Dali really shines in my opinion is with more complex mappings: properties that represent relationships between entities.  Suppose we create a second Entity called Book for our ALS_BOOKS table. This entity has a number of attributes, like id, title, publishYear etc.:
[image: image29.png]

· Now we know from our database that there is a foreign key from ALS_BOOKS to ALS_PUBLISHERS: every Book has one (and only one) Publisher. We would like to translate this to our Book and Publisher Entities: Book has a reference to its Publisher while Publisher has a Books collection of the contents of its portfolio.

Let’s create an attribute Publisher in the Book Entity and let’s generate getters and setters for this attribute:

[image: image30.png]

Select the getPublisher() method. Now go to the Persistence Properties view to specify the mapping:
[image: image31.png]

· Dali integrates with the RDB component of the Web Tools project for relational schema information.  It is currently necessary to open the Database Explorer View before creating or selecting a connection in the "Add Persistence..." wizard. When starting a new workbench session, it is currently necessary to re-connect to your database if you are working on-line with the DB.  This allows the Dali plug-in to provide DB related mapping assistance and validation.

The WTP Database Explorer (RDB) – very similar to the Database Connection Navigator in JDeveloper and the stand-alone Oracle Raptor tool – allows us to inspect the Tables and the data in them:
[image: image32.png]
