
EJB 3.0 Expert Group

Specification Lead:

Linda DeMichiel, Sun Microsystems

Please send comments to: ejb3-pdr-feedback@sun.com

Public Draft

Sun Microsystems

JSR 220: Enterprise JavaBeansTM,Version 3.0

Java Persistence API

microsystems

June 25, 2005
Version 3.0, Public Draft

Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

thout
e and
g ap-
ns do
f the
h ex-

kind
men-
hts),
rks,

ate and
ttp://
will
pe of
egistered

-

r im-
tech-

-

Specification: JSR-220, Enterprise Java Beans ("Specification")
Version: 3.0
Status: Pre-FCS, Public Review
Release: June 27, 2005

Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED EVALUATION LICENSE
Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (wi
the right to sublicense), under Sun's applicable intellectual property rights to view, download, us
reproduce the Specification only for the purpose of internal evaluation. This includes (i) developin
plications intended to run on an implementation of the Specification, provided that such applicatio
not themselves implement any portion(s) of the Specification, and (ii) excerpting brief portions o
Specification in oral or written communications which discuss the Specification provided that suc
cerpts do not in the aggregate constitute a significant portion of the Technology. No license of any
is granted hereunder for any other purpose including, for example, creating and distributing imple
tations of the Specification, modifying the Specification (other than to the extent of your fair use rig
or distributing the Specification to third parties. Also, no right, title, or interest in or to any tradema
service marks, or trade names of Sun or Sun's licensors is granted hereunder. If you wish to cre
distribute an implementation of the Specification, a license for that purpose is available at h
www.jcp.org. The foregoing license is expressly conditioned on your acting within its scope, and
terminate immediately without notice from Sun if you breach the Agreement or act outside the sco
the licenses granted above. Java, and Java-related logos, marks and names are trademarks or r
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release o
plement any portion of the Specification in any product. In addition, the Specification could include
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, RELATED IN ANY WAY TO YOUR HAVING OR USING THE SPECIFICATION, EVEN IF
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.
2 6/25/05

Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

by a
in the
rdance
with

), you
and (ii)
sub-
n the

ling
rules
RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights
Software and accompanying documentation shall be only as set forth in this license; this is in acco
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis,
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitatio
Feedback for any purpose.

GOVERNING LAW

Any action relating to or arising out of this Agreement will be governed by California law and control
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law
of any jurisdiction will not apply.

Rev. May 9 2005
3 6/25/05

Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

p in
e to
ce so-
out
day.

ence
con-
Acknowledgments
I would like to specially recognize Gavin King and the Hibernate community for their leadershi
achieving a developer-driven solution to the problem of object/relational persistence. I would lik
thank Gavin for bringing his energy, his experience, and his vision of a developer-centric persisten
lution to the EJB 3 effort, and for converging the Hibernate community in support of this work. With
his many significant contributions, it would not have been possible for this work to be where it is to

I would like to extend my thanks to Mike Keith for sharing with the expert group his extensive experi
with Oracle TopLink, for all his technical proposals to the group, and for his many other technical
tributions to the success of this specification.
4 6/25/05

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.
Table of Contents

Chapter 1 Introduction.. 13

1.1 Expert Group ... 13

1.2 Document Conventions ... 13

Chapter 2 Entities ... 15

2.1 Requirements on the Entity Class.. 15

2.1.1 Persistent Fields and Properties .. 16
2.1.2 Example .. 18
2.1.3 Entity Instance Creation.. 19
2.1.4 Primary Keys and Entity Identity.. 19
2.1.5 Embeddable Classes.. 20
2.1.6 Mapping Defaults for Non-Relationship Fields or Properties 20
2.1.7 Entity Relationships .. 20
2.1.8 Relationship Mapping Defaults... 22

2.1.8.1 Bidirectional OneToOne Relationships 22
2.1.8.2 Bidirectional ManyToOne/ OneToMany Relationships 23
2.1.8.3 Unidirectional Single-Valued Relationships....................... 24

2.1.8.3.1 Unidirectional OneToOne Relationships.............. 25
2.1.8.3.2 Unidirectional ManyToOne Relationships........... 26

2.1.8.4 Bidirectional ManyToMany Relationships 27
2.1.8.5 Unidirectional Multi-Valued Relationships 29

2.1.8.5.1 Unidirectional OneToMany Relationships........... 29
2.1.8.5.2 Unidirectional ManyToMany Relationships 30

2.1.9 Inheritance... 31
2.1.9.1 Abstract Entity Classes... 32
2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy..... 33
2.1.9.3 Embeddable Superclasses... 33

2.1.10 Inheritance Mapping Strategies... 35
2.1.10.1 Single Table per Class Hierarchy Strategy 36
2.1.10.2 Table per Class Strategy ... 36
2.1.10.3 Joined Subclass Strategy... 36

Chapter 3 Entity Operations ... 37

3.1 EntityManager ... 37

3.1.1 EntityManager Interface.. 38
3.1.2 Example of Use of EntityManager API .. 41

3.2 Entity Instance’s Life Cycle .. 41

3.2.1 Persisting an Entity Instance ... 42
3.2.2 Removal .. 42
3.2.3 Synchronization to the Database... 43
3.2.4 Detached Entities .. 44

3.2.4.1 Merging Detached Entity State... 44
3.2.5 Managed Instances.. 45
3.2.6 Transaction Rollback... 45
5 6/25/05

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.

e

3.3 Persistence Context.. 46

3.3.1 Extended Persistence Context ... 46
3.4 Entity Listeners and Callback Methods... 46

3.4.1 Semantics of the Life Cycle Callback Methods for Entities 48
3.4.2 Example... 49

3.5 ... Qury
API49

3.5.1 Query Interface.. 50
3.5.1.1 Example .. 52

3.5.2 Parameter Names... 53
3.5.3 Named Queries.. 53
3.5.4 Polymorphic Queries... 53
3.5.5 SQL Queries.. 53

Chapter 4 Query Language... 57

4.1 Overview.. 57

4.2 EJB QL Statement Types... 59

4.2.1 Select Statements... 59
4.2.2 Update and Delete Statements... 59

4.3 Abstract Schema Types and Query Domains .. 60

4.3.1 Naming .. 61
4.3.2 Example... 61

4.4 The FROM Clause and Navigational Declarations ... 62

4.4.1 Identifiers... 63
4.4.2 Identification Variables.. 63
4.4.3 Range Variable Declarations ... 64
4.4.4 Path Expressions.. 65
4.4.5 Joins... 66

4.4.5.1 Inner Joins (Relationship Joins).. 66
4.4.5.2 Left Outer Joins... 67
4.4.5.3 Fetch Joins .. 67

4.4.6 Collection Member Declarations .. 68
4.4.7 EJB QL and SQL... 68
4.4.8 Polymorphism ... 69

4.5 WHERE Clause ... 69

4.6 Conditional Expressions .. 69

4.6.1 Literals... 70
4.6.2 Identification Variables.. 70
4.6.3 Path Expressions.. 70
4.6.4 Input Parameters.. 70

4.6.4.1 Positional Parameters.. 71
4.6.4.2 Named Parameters .. 71

4.6.5 Conditional Expression Composition.. 71
4.6.6 Operators and Operator Precedence.. 72
4.6.7 Between Expressions... 72
4.6.8 In Expressions ... 73
4.6.9 Like Expressions ... 74
 6/25/05 6

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.

1

1
02
4.6.10 Null Comparison Expressions... 74
4.6.11 Empty Collection Comparison Expressions 74
4.6.12 Collection Member Expressions ... 75
4.6.13 Exists Expressions... 75
4.6.14 All or Any Expressions ... 76
4.6.15 Subqueries... 76
4.6.16 Functional Expressions ... 77

4.6.16.1 String Functions.. 77
4.6.16.2 Arithmetic Functions .. 78

4.7 GROUP BY, HAVING .. 79

4.8 SELECT Clause... 79

4.8.1 Constructor Expressions in the SELECT Clause.............................. 81
4.8.2 Null Values in the Query Result.. 81
4.8.3 Aggregate Functions in the SELECT Clause.................................... 81
4.8.4 Examples... 82

4.9 ORDER BY Clause ... 83

4.10 Return Value Types.. 84

4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans...... 84
4.11 Bulk Update and Delete Operations .. 86

4.12 Null Values .. 87

4.13 Equality and Comparison Semantics... 88

4.14 Restrictions .. 89

4.15 Examples ... 89

4.15.1 Simple Queries.. 89
4.15.2 Queries with Relationships ... 89
4.15.3 Queries Using Input Parameters.. 91

4.16 EJB QL BNF ... 91

Chapter 5 EntityManager.. 95

5.1 Entity Managers... 95

5.2 Obtaining an EntityManager ... 96

5.2.1 Obtaining a Container-managed Entity Manager 96
5.2.2 Obtaining an Application-managed Entity Manager 96

5.2.2.1 Obtaining an Entity Manager Factory in a J2EE Container 97
5.2.2.2 Obtaining an Entity Manager Factory in a J2SE Environment97
5.2.2.3 The EntityManagerFactory Interface.................................. 98
5.2.2.4 Control of the Application-Managed EntityManager Lifecycle.99

5.3 Controlling Transactions ... 100

5.3.1 JTA EntityManagers.. 100
5.3.2 Resource-local EntityManagers .. 100

5.3.2.1 The EntityTransaction Interface ... 101
5.4 Persistence Contexts .. 10

5.4.1 Container-managed Persistence Contexts ... 10
5.4.1.1 Container-managed Transaction-scoped Persistence Context1
5.4.1.2 Container-managed Extended Persistence Context 102

5.4.2 Application-managed Persistence Contexts...................................... 102
7 6/25/05

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.

102

s-

ce

5

5
6
7

ce

ction)

1

1

3

4

9

1

5.4.2.1 Application-managed Transaction-scoped Persistence Context
5.4.2.2 Application-managed Extended Persistence Context 103

5.4.3 Persistence Context Propagation ... 103
5.4.3.1 Persistence Context Propagation for Transaction-scoped Persi

tence Contexts103
5.4.3.2 Persistence Context Propagation Rules for Extended Persisten

Contexts104
5.5 Examples.. 10

5.5.1 Container-managed Transaction-scoped Persistence Context........... 10
5.5.2 Container-managed Extended Persistence Context........................... 10
5.5.3 Application-managed Transaction-scoped Persistence Context (JTA)10
5.5.4 Application-managed Extended Persistence Context(JTA) 108
5.5.5 Application-managed Transaction-scoped Persistence Context (Resour

Transaction)109
5.5.6 Application-managed Extended Persistence Context (Resource Transa

110
5.6 Requirements on the Container ... 11

5.6.1 Persistence Context Management ... 111
5.6.2 Container Managed Persistence Contexts ... 11

Chapter 6 Entity Packaging .. 113

6.1 Persistence Unit ... 11

6.2 Persistence Archive.. 11

6.2.1 persistence.xml file.. 114
6.2.1.1 name.. 115
6.2.1.2 provider ... 115
6.2.1.3 jta-data-source, non-jta-data-source.................................... 115
6.2.1.4 mapping-file, jar-file, class.. 115
6.2.1.5 properties... 116
6.2.1.6 Examples... 116

6.2.2 Default EntityManager .. 118
6.3 Deployment.. 118

Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping 11

7.1 J2EE Container Deployment ... 119

7.1.1 Responsibilities of the Container .. 119
7.1.2 Responsibilities of the Persistence Provider 120
7.1.3 javax.persistence.spi.PersistenceProvider ... 12
7.1.4 javax.persistence.spi.PersistenceInfo Interface 122

7.2 Bootstrapping in J2SE Environments .. 123

Chapter 8 Metadata Annotations .. 125

8.1 Entity.. 125

8.2 Callback Annotations... 126

8.3 Annotations for Queries... 127

8.3.1 Flush Mode Annotation... 127
 6/25/05 8

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.

1

8.3.2 NamedQuery Annotation .. 127
8.3.3 NamedNativeQuery Annotation.. 128
8.3.4 Annotations for SQL Query Result Set Mappings............................ 128

8.4 References to EntityManager and EntityManagerFactory 129

8.4.1 PersistenceContext Annotation ... 129
8.4.2 PersistenceUnit Annotation... 130

Chapter 9 Metadata for Object/Relational Mapping .. 13

9.1 Annotations for Object/Relational Mapping ... 131

9.1.1 Table Annotation... 132
9.1.2 SecondaryTable Annotation .. 133
9.1.3 SecondaryTables Annotation .. 134
9.1.4 UniqueConstraint Annotation ... 134
9.1.5 Column Annotation... 135
9.1.6 JoinColumn Annotation .. 136
9.1.7 JoinColumns Annotation... 138
9.1.8 Id Annotation .. 139
9.1.9 AttributeOverride Annotation ... 140

9.1.10 AttributeOverrides Annotation.. 140
9.1.11 EmbeddedId Annotation ... 141
9.1.12 IdClass Annotation.. 141
9.1.13 Transient Annotation... 141
9.1.14 Version Annotation ... 142
9.1.15 Basic Annotation... 142
9.1.16 Lob Annotation ... 144
9.1.17 ManyToOne Annotation.. 145
9.1.18 OneToOne Annotation .. 146
9.1.19 OneToMany Annotation.. 148
9.1.20 JoinTable Annotation .. 149
9.1.21 ManyToMany Annotation ... 150
9.1.22 MapKey Annotation.. 151
9.1.23 OrderBy Annotation.. 153
9.1.24 Inheritance Annotation.. 153
9.1.25 PrimaryKeyJoinColumn Annotation... 155
9.1.26 PrimaryKeyJoinColumns Annotation ... 156
9.1.27 DiscriminatorColumn Annotation... 157
9.1.28 Embeddable Annotation.. 158
9.1.29 Embedded Annotation... 159
9.1.30 EmbeddableSuperclass Annotation... 159
9.1.31 SequenceGenerator Annotation .. 159
9.1.32 TableGenerator Annotation... 160

9.2 Examples of the Application of Annotations for Object/Relational Mapping 163

9.2.1 Examples of Simple Mappings ... 163
9.2.2 A More Complex Example ... 166

Chapter 10 XML Descriptor... 171

10.1 XML Schema... 171
9 6/25/05

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.

8

Chapter 11 Related Documents .. 185

Appendix A Revision History... 187

A.1 Early Draft 1 .. 187

A.2 Early Draft 2 .. 187

A.3 Changes Since EDR 2.. 18
 6/25/05 10

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.
List of Tables

Table 1 Definition of the AND Operator..87

Table 2 Definition of the OR Operator...88

Table 3 Definition of the NOT Operator ..88

Table 4 Table Annotation Elements ...132

Table 5 SecondaryTable Annotation Elements ..133

Table 6 UniqueConstraint Annotation Elements..135

Table 7 Column Annotation Elements ...135

Table 8 JoinColumn Annotation Elements ..137

Table 9 Id Annotation Elements...139

Table 10 AttributeOverride Annotation Elements ...140

Table 11 Basic Annotation Elements ...143

Table 12 LobAnnotation Elements...145

Table 13 ManyToOne Annotation Elements ..146

Table 14 OneToOne Annotation Elements...146

Table 15 OneToMany Annotation Elements ..148

Table 16 JoinTable Annotation Elements...149

Table 17 Inheritance Annotation Elements ..154

Table 18 PrimaryKeyJoinColumn Annotation Elements ...155

Table 19 DiscriminatorColumn Annotation Elements...158

Table 20 Embeddable Annotation Elements ..158

Table 21 SequenceGenerator Annotation Elements...160

Table 22 TableGenerator Annotation Elements ...161
11 6/25/05

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.
 6/25/05 12

Enterprise JavaBeans 3.0, Public Draft

Sun Microsystems, Inc.
Chapter 1 Introduction
t/rela-

tadata
so tar-

istence
s, as

. This
hese

eremy
Sie-
rad
ant
liv-
ac-

hiel,
sant:
vins;
gen;

scrib-
This document is the specification of the Java API for the management of persistence and objec
tional mapping with J2EE and J2SE.

This persistence API—together with the query language and object/relational mapping me
defined in this document—is required to be supported under Enterprise JavaBeans 3.0. It is al
geted at being used stand-alone with J2SE.

Leading experts throughout the entire Java community have come together to build this Java pers
standard. This work incorporates contributions from the Hibernate, TopLink, and JDO communitie
well as from the EJB community.

1.1 Expert Group

This work is being conducted as part of JSR-220 under the Java Community Process Program
specification is the result of the collaborative work of the members of the JSR 220 Expert Group. T
include the following present and former expert group members: Apache Software Foundation: J
Boynes; BEA: Seth White; Borland: Jishnu Mitra; E.piphany: Karthik Kothandaraman; Fujitsu-
mens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson, Randy Schnier; IONA: Con
O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc Fleury; Macromedia: Hem
Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle: Michael Keith, Debu Panda, O
ier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit Yalcinalp; SAS Institute: Rob S
coccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun Microsystems: Linda DeMic
Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi; Tmax Soft: Woo Jin Kim; Ver
David Tinker; Xcalia: Eric Samson; Reza Behforooz; Emmanuel Bernard; Wes Biggs; David Ble
Scott Crawford; Geoff Hendrey; Oliver Ihns; Oliver Kamps; Richard Monson-Haefel; Dirk Reinsha
Carl Rosenberger; Suneet Shah.

1.2 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

The Helvetica font is used to specify the BNF of EJB QL.
13 6/25/05

Introduction Enterprise JavaBeans 3.0, Public Draft Document Conventions

Sun Microsystems, Inc.

ify the
ed in

or the
This document is written in terms of the use of Java language metadata annotations to spec
semantics of persistent classes and their object/relational mapping. An XML descriptor (as specifi
Chapter 10) may be used as an alternative to annotations. The elements of this descriptor mirr
annotations and have the same semantics.
 6/25/05 14

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

sses

n

s well.

ce), the
Chapter 2 Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary cla
that serve as helper classes or that are used to represent the state of the entity.

2.1 Requirements on the Entity Class

The entity class must be annotated with theEntity annotation or denoted in the XML descriptor as a
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors a
The no-arg constructor must be public or protected.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interfa
entity class must implement theSerializable interface.

The entity class must not be final. No methods of the entity class may be final.
15 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

d con-
es, and

proper-
y the
of the

r other

esses
ith the
r pro-

ntity

cces-

roper-

iron

e i
Entities support inheritance, polymorphic associations, and polymorphic queries. Both abstract an
crete classes can be entities. Entities may extend non-entity classes as well as entity class
non-entity classes may extend entity classes.

The state of an entity is represented by instance variables, which may correspond to JavaBeans
ties. An instance variable may be directly accessed only from within the methods of the entity b
entity instance itself. Instance variables must not be accessed by clients of the entity. The state
entity is available to clients only through the entity’s accessor methods (getter/setter methods) o
business methods. Instance variables must be private, protected, or package visibility.

2.1.1 Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtime[1] either via JavaBeans
style property accessors or via instance variables.

• If the entity is annotated with the annotation element valueaccess=FIELD , the persistence
provider runtime accesses instance variables directly and all non-transient instance vari-
ables that are not annotated with theTransient annotation are persistent.

• If the entity is annotated with the annotation element valueaccess=PROPERTY, or if the
access annotation element value is not specified, the persistence provider runtime acc
persistent state via the property accessor methods and all properties not annotated w
Transient annotation are persistent. The property accessor methods must be public o
tected.

• When theFIELD access type is used, the object/relational mapping annotations for the e
class annotate the instance variables. When thePROPERTYaccess type is used, the
object/relational mapping annotations for the entity class annotate the getter property a
sors.[2]

It is required that the entity class follow the method conventions for a JavaBean when persistent p
ties are used.

In this case, for every persistent propertypropertyof typeT of the entity, there is a getter method,get-
Property, and setter methodsetProperty. For boolean properties,isPropertyis an alternative name for
the getter method.

For single-valued persistent properties, these method signatures are:

• T getProperty()

• void setProperty(T t)

[1] The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In EJB env-
ments, this may be the EJB container or a third-party persistence implementation integrated with it.

[2] Note that the order in which the persistence provider runtime calls these methods when loading or storing persistent stats not
defined. Business logic contained in such methods therefore cannot rely upon a specific invocation order.
 6/25/05 16

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

entions

he
ample,

ethods

rolled
oad or
Persis-

ust not
ties of

pes;
es,

g, and
Collection-valued persistent fields and properties must be defined in terms ofjava.util.Collec-
tion interfaces regardless of whether the entity class otherwise adheres to the JavaBeans conv
noted above. The following collection interfaces are supported:java.util.Collection ,
java.util.Set , java.util.List [3], java.util.Map .

For collection-valued persistent properties, typeT must be one of these Collection interface types in t
method signatures above. Generic variants of these Collection types may also be used (for ex
Set<Order>).

In addition to returning and setting the persistent state of the instance, the property accessor m
may contain other business logic as well, for example, to perform validation.

Note that the persistence runtime executes this validation logic when the access typePROP-
ERTY is specified or defaulted. Caution should be exercised in adding business logic to the
accessor methods when thePROPERTY access type is used.

Runtime exceptions thrown by property accessor methods will cause the current transaction to be
back. Application exceptions thrown by such methods when used by the persistence runtime to l
store persistent state will cause the persistence runtime to rollback the transaction and to throw a
tenceException that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications m
override the object/relational mapping metadata that applies to the persistent fields or proper
entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive ty
java.lang.String ; other Java serializable types (including wrappers of the primitive typ
java.math.BigInteger , java.math.BigDecimal , java.util.Date ,
java.util.Calendar [4], java.sql.Date , java.sql.Time , java.sql.Timestamp ,
user-defined serializable types,byte[] , Byte[] , char[] , and Character[]) ; enums; entity
types and/or collections of entity types; and embeddable classes (see section 2.1.5).

Object/relational mapping metadata may be specified to customize the object-relational mappin
the loading and storing of the entity state and relationships. See Chapter 9.

[3] Portable applications should not expect the order of lists to be maintained across persistence contexts unless the@OrderBy con-
struct is used and modications to the list observe the specified ordering.

[4] Note that an instance must of Calendar must be fully initialized for the type that it is mapped to.
17 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.
2.1.2 Example
@Entity
public class Customer implements Serializable {

 private Long id;

 private String name;

 private Address address;

 private Collection<Order> orders = new HashSet();

 private Set<PhoneNumber> phones = new HashSet();

 // No-arg constructor
 public Customer() {}

 @Id
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

@OneToMany
 public Collection<Order> getOrders() {
 return orders;
 }

 public void setOrders(Collection<Order> orders) {
 this.orders = orders;
 }

 @ManyToMany
 public Set<PhoneNumber> getPhones() {
 return phones;
 }

 public void setPhones(Set<PhoneNumber> phones) {
 this.phones = phones;
 }
 6/25/05 18

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

y

rty of
perty
repre-
data-

pes:

ould

d.

e types

lass or

lass,
f the
 // Business method to add a phone number to the customer
 public void addPhone(PhoneNumber phone) {
 this.getPhones().add(phone);
 // Set the phone’s ref to this customer
 phone.setCustomer(this);
 }
}

}

2.1.3 Entity Instance Creation
Entity instances are created by means of thenew operation. An entity instance, when first created b
new is not yet persistent. An instance becomes persistent by means of theEntityManager API. The
lifecycle of entity instances is described in Section 3.2.

2.1.4 Primary K eys and Entity Identity
Every entity must have a primary key.

A simple (i.e., non-composite) primary key must correspond to a single persistent field or prope
the entity class. A composite primary key must correspond to either a single persistent field or pro
or to a set of such fields or properties as described below. A primary key class must be defined to
sent a composite primary key. Composite primary keys typically arise when mapping from legacy
bases when the database key is comprised of several columns.

The primary key (or field or property of a composite primary key) must be one of the following ty
any Java primitive type; any primitive wrapper type;java.lang.String ; java.util.Date ;
java.sql.Date . In general, however, approximate numeric types (e.g., floating point types) sh
never be used in primary keys.

Both field and property access is allowed for primary key classes, as for entity classes.

The following rules apply for composite primary keys.

• The primary key class must be public and must have a public no-arg constructor.

• If access=PROPERTY, the properties of the primary key class must be public or protecte

• The primary key class must be serializable.

• The primary key class must defineequals andhashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the databas
to which the key is mapped.

• A composite primary key may either be represented and mapped as an embeddable c
may be represented and mapped to multiple fields or properties of the entity class.

• If the composite primary key class is mapped to multiple fields or properties of the entity c
then the names of primary key fields or properties in the primary key class and those o
19 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

entity

f this

, unlike
objects
d are
as unde-
ogether

excep-

map-
XML

. Rela-

ired in
entity class must correspond and their types must be the same. It is permitted for the
class and the primary key class to use different access types (PROPERTY or FIELD).

• The application must not change the value of the primary key. The behavior is undefined i
occurs.[5]

2.1.5 Embeddable Classes
An entity may use other fine-grained classes to represent entity state. Instances of these classes
entity instances themselves, do not have persistent identity. Instead, they exist only as embedded
of the entity to which they belong. Such embedded objects belong strictly to their owning entity, an
not sharable across persistent entities. Attempting to share an embedded object across entities h
fined semantics. Because these objects have no persistent identity, they are typically mapped t
with the entity instance to which they belong.[6]

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the
tion that embeddable classes are not annotated asEntity .

2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
If a persistent field or property other than a relationship property is not annotated with one of the
ping annotations defined in Chapter 9 (or equivalent mapping information is not specified in the
descriptor), the following default mapping rules are applied in order:

• If the type is a class that is annotated with the@Embeddable annotation, it is mapped as
@Embedded.

• If the type of the field or property is one of the following, it is mapped as@Basic : Java prim-
itive types, wrappers of the primitive types,java.lang.String , java.math.BigIn-
teger , java.math.BigDecimal , java.util.Date , java.util.Calendar ,
java.sql.Date , java.sql.Time , java.sql.Timestamp , byte[] , Byte[] ,
char[] , Character[] , enums, any other type that implements Serializable.

It is an error if no annotation is present and none of the above rules apply.

2.1.7 Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many
tionships are polymorphic.

[5] The implementation may, but is not required to, throw an exception if this occurs.

[6] Support for collections of embedded objects and for the polymorphism and inheritance of embeddable classes will be requ
a future release of this specification.
 6/25/05 20

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

tions
entity:
r-

entity

of the
rela-
his is

ning
of a

.2.3.

the

ela-

ning

con-

-

over-
map-
istent
nship
r the
e rela-

their
erential
If there is an association between two entities, one of the following relationship modeling annota
must be applied to the corresponding persistent property or instance variable of the referencing
OneToOne, OneToMany, ManyToOne, ManyToMany. For associations that do not specify the ta
get type (e.g., where Java generic types are not used for collections), it is necessary to specify the
that is the target of the relationship.

These annotations mirror common practice in relational database schema modeling. The use
relationship modeling annotations allows the object/relationship mapping of associations to the
tional database schema to be fully defaulted, to provide an ease-of-development facility. T
described in Section 2.1.8, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an ow
side and an inverse side. A unidirectional relationship has only an owning side. The owning side
relationship determines the updates to the relationship in the database, as described in section 3

The following rules apply to bidirectional relationships:

• The inverse side of a bidirectional relationship must refer to its owning side by use of
mappedBy element of theOneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the r
tionship.

• The many side of one-to-many / many-to-one bidirectional relationships must be the ow
side, hence themappedBy element cannot be specified on theManyToOne annotation.

• For one-to-one bidirectional relationships, the owning side corresponds to the side that
tains the corresponding foreign key.

• For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of thecascade=REMOVEspecification. The
cascade=REMOVEspecification should only be applied to associations that are specified asOne-
ToOne or OneToMany. Applications that applycascade=REMOVEto other associations are not por
table.

Additional mapping annotations (e.g., column and table mapping annotations) may be specified to
ride or further refine the default mappings described in Section 2.1.8. For example, a foreign key
ping may be used for a unidirectional one-to-many mapping. Any such overriding must be cons
with the relationship modeling annotation that is specified. For example, if a many-to-one relatio
mapping is specified, it is not permitted to specify a unique key constraint on the foreign key fo
relationship. Such schema-level mapping annotations must be specified on the owning side of th
tionship.

The persistence provider handles the object-relational mapping of the relationships, including
loading and storing to the database as specified in the metadata of the entity class, and the ref
integrity of the relationships as specified in the database (e.g., by foreign key constraints).
21 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ply

n-

he
2.1.8 Relationship Mapping Defaults

This section describes the mapping defaults that apply to the use of theOneToOne, OneToMany,
ManyToOne, andManyToMany relationship modeling annotations. The same mapping defaults ap
when the XML descriptor is used to denote the relationship cardinalities.

2.1.8.1 Bidirectional OneToOne Relationships
Assuming that:

Entity A references a single instance of Entity B.

Entity B references a single instance of Entity A.

Entity A is specified as the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
 private Cubicle assignedCubicle;

 @OneToOne
 public Cubicle getAssignedCubicle() {
 return assignedCubicle;
 }
 public void setAssignedCubicle(Cubicle cubicle) {
 this.assignedCubicle = cubicle;
 }
 ...
}

@Entity
public class Cubicle {
 private Employee residentEmployee;

 @OneToOne(mappedBy="assignedCubicle")
 public Employee getResidentEmployee() {
 return residentEmployee;
 }
 public void setResidentEmployee(Employee employee) {
 this.residentEmployee = employee;
 }
 ...
}

 6/25/05 22

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

f
he

n-

he
In this example:

Entity Employee references a single instance of EntityCubicle .

Entity Cubicle references a single instance of EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity Cubicle is mapped to a table namedCUBICLE.

TableEMPLOYEEcontains a foreign key to tableCUBICLE. The foreign key column is named
ASSIGNEDCUBICLE_<PK of CUBICLE>, where <PK of CUBICLE> denotes the name o
the primary key column of tableCUBICLE. The foreign key column has the same type as t
primary key ofCUBICLE, and there is a unique key constraint on it.

2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.

Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB.
23 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.
Example:

@Entity
public class Employee {
 private Department department;

 @ManyToOne
 public Department getDepartment() {
 return department;
 }
 public void setDepartment(Department department) {
 this.department = department;
 }
 ...
}

@Entity
public class Department {
 private Collection<Employee> employees = new HashSet();

 @OneToMany(mappedBy="department")
 public Collection<Employee> getEmployees() {
 return employees;
 }

 public void setEmployees(Collection<Employee> employees) {
 this.employees = employees;
 }
 ...
}

In this example:

Entity Employee references a single instance of EntityDepartment .

Entity Department references a collection of EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity Department is mapped to a table namedDEPARTMENT.

TableEMPLOYEEcontains a foreign key to tableDEPARTMENT. The foreign key column is
namedDEPARTMENT_<PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of tableDEPARTMENT. The foreign key column has the
same type as the primary key ofDEPARTMENT.

2.1.8.3 Unidirectional Single-Valued Relationships
Assuming that:

Entity A references a single instance of Entity B.
 6/25/05 24

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

tional

n-

he
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirec
OneToOne or as a unidirectionalManyToOne relationship.

2.1.8.3.1 Unidirectional OneToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
 private TravelProfile profile;

 @OneToOne
 public TravelProfile getProfile() {
 return profile;
 }
 public void setProfile(TravelProfile profile) {
 this.profile = profile;
 }
 ...
}

@Entity
public class TravelProfile {
 ...
}

In this example:

Entity Employee references a single instance of EntityTravelProfile .

Entity TravelProfile does not reference EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity TravelProfile is mapped to a table namedTRAVELPROFILE.
25 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

n-

he

ary
TableEMPLOYEEcontains a foreign key to tableTRAVELPROFILE. The foreign key column
is named PROFILE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of tableTRAVELPROFILE. The foreign key col-
umn has the same type as the primary key ofTRAVELPROFILE, and there is a unique key
constraint on it.

2.1.8.3.2 Unidirectional ManyToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB.

Example:

@Entity
public class Employee {
 private Address address;

 @ManyToOne
 public Address getAddress() {
 return address;
 }
 public void setAddress(Address address) {
 this.address = address;
 }
 ...
}

@Entity
public class Address {
 ...
}

In this example:

Entity Employee references a single instance of EntityAddress .

Entity Address does not reference EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity Address is mapped to a table namedADDRESS.

TableEMPLOYEEcontains a foreign key to tableADDRESS. The foreign key column is named
ADDRESS_<PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the prim
 6/25/05 26

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

ey

y
of
ing:

i-
the
key column of tableADDRESS. The foreign key column has the same type as the primary k
of ADDRESS.

2.1.8.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.

Entity B references a collection of Entity A.

Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
tableA. The name of this foreign key column is formed as the concatenation of the follow
the name of the relationship property or field of entity B; "_"; the name of the primary key col-
umn in tableA. The other foreign key column refers to tableB and has the same type as the pr
mary key of tableB. The name of this foreign key column is formed as the concatenation of
following: the name of the relationship property or field of entity A; "_"; the name of the pri-
mary key column in tableB.
27 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ary

he
Example:

@Entity
public class Project {
 private Collection<Employee> employees;

 @ManyToMany
 public Collection<Employee> getEmployees() {
 return employees;
 }

 public void setEmployees(Collection<Employee> employees) {
 this.employees = employees;
 }
 ...
}

@Entity
public class Employee {
 private Collection<Project> projects;

 @ManyToMany(mappedBy="employees")
 public Collection<Project> getProjects() {
 return projects;
 }

 public void setProjects(Collection<Project> projects) {
 this.projects = projects;
 }
 ...
}

In this example:

Entity Project references a collection of EntityEmployee .

Entity Employee references a collection of EntityProject .

Entity Project is the owner of the relationship.

The following mapping defaults apply:

Entity Project is mapped to a table namedPROJECT.

Entity Employee is mapped to a table namedEMPLOYEE.

There is a join table that is namedPROJECT_EMPLOYEE(owner name first). This join table
has two foreign key columns. One foreign key column refers to tablePROJECTand has the
same type as the primary key ofPROJECT. The name of this foreign key column is
PROJECTS_<PK of PROJECT>, where <PK of PROJECT> denotes the name of the prim
key column of tablePROJECT. The other foreign key column refers to tableEMPLOYEEand
has the same type as the primary key ofEMPLOYEE. The name of this foreign key column is
EMPLOYEES_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of t
primary key column of tableEMPLOYEE.
 6/25/05 28

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

tional

y
of
ing:

tena-
2.1.8.5 Unidirectional Multi-Valued Relationships
Assuming that:

Entity A references a collection of Entity B.

Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirec
OneToMany or as a unidirectionalManyToMany relationship.

2.1.8.5.1 Unidirectional OneToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
tableA. The name of this foreign key column is formed as the concatenation of the follow
the name of entity A; "_"; the name of the primary key column in tableA. The other foreign
key column refers to tableB and has the same type as the primary key of tableB and there is a
unique key constraint on it. The name of this foreign key column is formed as the conca
tion of the following: the name of the relationship property or field of entity A; "_"; the name
of the primary key column in tableB.

Example:

@Entity
public class Employee {
 private Collection<AnnualReview> annualReviews;

 @OneToMany
 public Collection<AnnualReview> getAnnualReviews() {
 return annualReviews;
 }

 public void setAnnualReviews(Collection<AnnualReview> annualRe-
views) {
 this.annualReviews = annualReviews;
 }
 ...
}

@Entity
public class AnnualReview {
 ...
}

In this example:
29 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ri-

y
of
ing:

rela-
Entity Employee references a collection of EntityAnnualReview .

Entity AnnualReview does not reference EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity AnnualReview is mapped to a table namedANNUALREVIEW.

There is a join table that is namedEMPLOYEE_ANNUALREVIEW(owner name first). This
join table has two foreign key columns. One foreign key column refers to tableEMPLOYEE
and has the same type as the primary key ofEMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the p
mary key column of tableEMPLOYEE. The other foreign key column refers to tableANNUAL-
REVIEWand has the same type as the primary key ofANNUALREVIEW. This foreign key
column is namedANNUALREVIEWS_<PK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of tableANNUALREVIEW. There
is a unique key constraint on the foreign key that refers to tableANNUALREVIEW.

2.1.8.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
table A. The name of this foreign key column is formed as the concatenation of the follow
the name of entityA; "_"; the name of the primary key column in tableA. The other foreign
key column refers to tableB and has the same type as the primary key of tableB. The name of
this foreign key column is formed as the concatenation of the following: the name of the
tionship property or field of entityA; "_"; the name of the primary key column in tableB.
 6/25/05 30

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

ri-

ey

tions,

nnotated
Example:

@Entity
public class Employee {
 private Collection<Patent> patents;

 @ManyToMany
 public Collection<Patent> getPatents() {
 return patents;
 }

 public void setPatents(Collection<Patent> patents) {
 this.patents = patents;
 }
 ...
}

@Entity
public class Patent {
 ...
}

In this example:

Entity Employee references a collection of EntityPatent .

Entity Patent does not reference EntityEmployee .

Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namedEMPLOYEE.

Entity Patent is mapped to a table namedPATENT.

There is a join table that is namedEMPLOYEE_PATENT(owner name first). This join table
has two foreign key columns. One foreign key column refers to tableEMPLOYEEand has the
same type as the primary key ofEMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the p
mary key column of tableEMPLOYEE. The other foreign key column refers to tablePATENT
and has the same type as the primary key ofPATENT. This foreign key column is named
PATENTS_<PK of PATENT>, where <PK of PATENT> denotes the name of the primary k
column of tablePATENT.

2.1.9 Inheritance
An entity may inherit from another entity class. Entities support inheritance, polymorphic associa
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes may be a
with theEntity annotation, mapped as entities, and queried for as entities.

Entities may extend non-entity classes and non-entity classes may extend entity classes.
31 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

of the

nly in
rget of

s

y.
When an entity is defined as a subclass of another entity, the primary keys of the entities must be
same type.

These concepts are described further in the following sections.

2.1.9.1 Abstract Entity Classes
An abstract class can be specified as an entity. An abstract entity differs from a concrete entity o
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the ta
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with theEntity annotation or denoted in the XML descriptor a
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarch

Example: Abstract class as an Entity

@Entity(access=FIELD)
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {

@Id protected Integer empId;
@Version protected Integer version;
@ManyToOne protected Address address;
...

}

@Entity
@Table(name="FT_EMP")
@Inheritance(discriminatorValue="FT")
@PrimaryKeyJoinColumn(name="FT_EMPID")
public class FullTimeEmployee extends Employee {

 // Inherit empId, but mapped in this class to FT_EMP.FT_EMPID
 // Inherit version mapped to EMP.VERSION
 // Inherit address mapped to EMP.ADDRESS fk

private Integer salary;
// Defaults to FT_EMP.SALARY
public Integer getSalary() { return salary; }
...

}

@Entity(access=FIELD)
@Table(name="PT_EMP")
@Inheritance(discriminatorValue="PT")
// PK field is PT_EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {

protected Float hourlyWage;
...

}

 6/25/05 32

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

lass is
entity
tained

terfaces

g infor-
efine

ment to
nt rela-

-

2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy
An entity may have a non-entity superclass, which may be either a concrete or abstract class.

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superc
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting
class. This non-persistent state is not managed by the EntityManager, nor it is required to be re
across transactions.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query in
and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.

Example: Non-entity superclass

public class Cart {

 // This state is transient
 Integer operationCount;

 public Cart() { operationCount = 0; }
 public Integer getOperationCount() { return operationCount; }
 public void incrementOperationCount() { operationCount++; }
}

@Entity
public class ShoppingCart extends Cart {

 Collection<Item> items = new Vector<Item>();

 public ShoppingCart() { super(); }

 @OneToMany
 public Collection<Item> getItems() { return items; }
 public void addItem(Item item) {
 items.add(item);
 incrementOperationCount();
 }
}

2.1.9.3 Embeddable Superclasses
An entity may have an embeddable superclass, which provides persistent entity state and mappin
mation, but which is not itself an entity. Typically, the purpose of an embeddable superclass is to d
state and mapping information that is common to multiple entity classes.

An embeddable superclass, unlike an entity, is not queryable and cannot be passed as an argu
EntityManager or Query operations. An embeddable superclass cannot be the target of a persiste
tionship.

Both abstract or concrete classes may be specified as embeddable superclasses. TheEmbeddable-
Superclass annotation (orembeddable-superclass XML descriptor element) is used to des
ignate an embeddable superclass.
33 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ng infor-

ept
rclass.
tables.

.

A class designated as an embeddable superclass has no separate table defined for it. Its mappi
mation is applied to the entities that inherit from it.

A class designated asEmbeddableSuperclass can be mapped in the same way as an entity exc
that the mappings will apply only to its subclasses since no table exists for the embeddable supe
When applied to the subclasses the inherited mappings will apply in the context of the subclass
Mapping information may be overridden in such subclasses by using theAttributeOverride
annotation orattribute-override XML element.

All other entity mapping defaults apply equally to a class designated asEmbeddableSuperclass .

The following example illustrates the definition of a concrete class as an embeddable superclass
 6/25/05 34

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Sun Microsystems, Inc.

lational
Example: Concrete class as an Embeddable Superclass

@EmbeddableSuperclass(access=FIELD)
public class Employee {

 @Id protected Integer empId;
 @Version protected Integer version;
 @ManyToOne @JoinColumn(name="ADDR")
 protected Address address;

 public Integer getEmpId() { ... }
 public void setEmpId(Integer id) { ... }
 public Address getAddress() { ... }
 public void setAddress(Address addr) { ... }
}

// Default table is FTEMPLOYEE table
@Entity
public class FTEmployee extends Employee {

 // Inherited empId field mapped to FTEMPLOYEE.EMPID
 // Inherited version field mapped to FTEMPLOYEE.VERSION
 // Inherited address field mapped to FTEMPLOYEE.ADDR fk
 private Integer salary;

 public FTEmployee() {}

 // Defaults to FTEMPLOYEE.SALARY
 public Integer getSalary() { ... }
 public void setSalary(Integer salary) { ... }
}

@Entity(access=FIELD) @Table(name="PT_EMP")
@AttributeOverride(name="address", column=@Column(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

 // Inherited empId field mapped to PT_EMP.EMPID
 // Inherited version field mapped to PT_EMP.VERSION
 // address field mapping overridden to PT_EMP.ADDR_ID fk
 @Column(name="WAGE")
 protected Float hourlyWage;

 public PartTimeEmployee() {}

 public Float getHourlyWage() { ... }
 public void setHourlyWage(Float wage) { ... }
}

2.1.10 Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a re
database schema:

• a single table per class hierarchy
35 6/25/05

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Sun Microsystems, Inc.

han the
class.

strat-

n that
ss to

d for

to the

luding

sued

ch sub-
lass (not
ry key
.

tances
at range
• a single table per concrete entity class

• a strategy in which fields that are specific to a subclass are mapped to a separate table t
fields that are common to the parent class, and a join is performed to instantiate the sub

An implementation is required to support the single table per class hierarchy inheritance mapping
egy.

Support for the other inheritance mapping strategies is optional in this release and will be
required in the next release of this specification. Support for the combination of inheritance
strategies will be addressed further in a future draft of this specification.

2.1.10.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a colum
serves as a “discriminator column”, that is, a column whose value identifies the specific subcla
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities an
queries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific
subclasses be nullable.

2.1.10.2 Table per Class Strategy
In this mapping strategy, each class is mapped to a separate table. All properties of the class, inc
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:

• It provides poor support for polymorphic relationships.

• It typically requires that SQL UNION queries (or a separate SQL query per subclass) be is
for queries that are intended to range over the class hierarchy.

2.1.10.3 Joined Subclass Strategy
In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Ea
class is represented by a separate table that contains those fields that are specific to the subc
inherited from its superclass), as well as the column(s) that represent its primary key. The prima
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table

This strategy provides support for polymorphic relationships between entities.

It has the drawback that it requires that one or more join operations be performed to instantiate ins
of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries th
over the class hierarchy likewise require joins.
 6/25/05 36

EntityManager Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

d

set of
n the

con-
nti-

istence
n, and

c-
ter 6.
Chapter 3 Entity Operations

This chapter describes the use of theEntityManager API to manage the entity instance lifecycle an
the use of theQuery API to retrieve and query entities and their persistent state.

3.1 EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a
entity instances in which for any persistent entity identity there is a unique entity instance. Withi
persistence context, the entity instances and their lifecycle are managed.

TheEntityManager interface defines the methods that are used to interact with the persistence
text. TheEntityManager API is used to create and remove persistent entity instances, to find e
ties by their primary key identity, and to query over entities.

The set of entities that can be managed by a given EntityManager instance is defined by a pers
unit. A persistence unit defines the set of all classes that are related or grouped by the applicatio
which must be colocated in their mapping to a single database.

Section 3.1 defines theEntityManager interface. The entity instance lifecycle is described in Se
tion 3.2. The relationship between an EntityManager and a persistence unit is described in Chap
37 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.
3.1.1 EntityManager Interface

package javax.persistence;

/**
 * Interface used to interact with the persistence context.
*/
public interface EntityManager {

/**
 * Make an instance managed and persistent.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 * or entity is detached
 * @throws TransactionRequiredException if there is
 * no transaction
 */
public void persist(Object entity);

/**
 * Merge the state of the given entity into the
 * current persistence context.
 * @param entity
 * @return the instance that the state was merged to
 * @throws IllegalArgumentException if instance is not an
 * entity or is a removed entity
 * @throws TransactionRequiredException if there is
 * no transaction
 */
public <T> T merge(T entity);

/**
 * Remove the instance.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 * or if a detached entity
 * @throws TransactionRequiredException if there is
 * no transaction
 */
public void remove(Object entity);

/**
 * Find by primary key.
 * @param entityClass
 * @param primaryKey
 * @return the found entity instance or null
 * if the entity does not exist
 * @throws IllegalArgumentException if the first argument does
 * not denote an entity type or the second
 * argument is not a valid type for that
 * entity’s primary key
 */
public <T> T find(Class<T> entityClass, Object primaryKey);

/**
 * Get an instance, whose state may be lazily fetched.
 * If the requested instance does not exist in the database,
 * throws EntityNotFoundException when the instance state is
 6/25/05 38

EntityManager Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.
 * first accessed. (The container is permitted to throw
 * EntityNotFoundException when get is called.)

* The application should not expect that the instance state will
 * be available upon detachment, unless it was accessed by the
 * application while the entity manager was open.
 * @param entityClass
 * @param primaryKey
 * @return the found entity instance
 * @throws IllegalArgumentException if the first argument does
 * not denote an entity type or the second
 * argument is not a valid type for that
 * entity’s primary key
 * @throws EntityNotFoundException if the entity state
 * cannot be accessed
 */
public <T> T getReference(Class<T> entityClass, Object prima-

ryKey);

/**
 * Synchronize the persistence context to the
 * underlying database.
 * @throws TransactionRequiredException if there is
 * no transaction
 * @throws PersistenceException if the flush fails
 */
public void flush();

/**
 * Refresh the state of the instance from the database,
 * overwriting changes made to the entity, if any.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 * or entity is not managed
 * @throws TransactionRequiredException if there is
 * no transaction
 * @throws EntityNotFoundException if the entity no longer
 * exists in the database
 */
public void refresh(Object entity);

/**
 * Check if the instance belongs to the current persistence
 * context.
 * @param entity
 * @return
 * @throws IllegalArgumentException if not an entity
 */
public boolean contains(Object entity);

/**
 * Create an instance of Query for executing an
 * EJB QL statement.
 * @param ejbqlString an EJB QL query string
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createQuery(String ejbqlString);

/**
39 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.
 * Create an instance of Query for executing a
 * named query (in EJB QL or native SQL).
 * @param name the name of a query defined in metadata
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createNamedQuery(String name);

/**
 * Create an instance of Query for executing
 * a native SQL statement.
 * @param sqlString a native SQL query string
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createNativeQuery(String sqlString);

/**
 * Create an instance of Query for executing
 * a native SQL query.
 * @param sqlString a native SQL query string
 * @param resultClass the class of the resulting instances
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createNativeQuery(String sqlString, Class result-

Class);

/**
 * Create an instance of Query for executing
 * a native SQL query.
 * @param sqlString a native SQL query string
 * @param resultSetMapping the name of the result set mapping
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createNativeQuery(String sqlString, String result-

SetMapping);

/**
 * Closes an application-managed EntityManager.
 * This method can only be called when the EntityManager
 * is not associated with an active transaction.
 * After an EntityManager has been closed, all methods on the
 * EntityManager instance will throw the IllegalStateException
 * except for isOpen, which will return false.
 * @throws IllegalStateException if the EntityManager is
 * associated with an active transaction or if the
 * EntityManager is container-managed.
 */
public void close();

/**
 * Indicates whether the EntityManager is open.
 * @return true until the EntityManager has been closed.
 */
public boolean isOpen();

/**
 6/25/05 40

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

-

ay be

ed
Man-

n

tence

ciated
 * Returns the resource-level transaction object.
 * The EntityTransaction instance may be used serially to
 * begin and commit multiple transactions.
 * @return EntityTransaction instance
 * @throws IllegalStateException if invoked on a JTA
 * EntityManager or an EntityManager that has been closed.
 */
public EntityTransaction getTransaction();

}

Thepersist , merge , remove , flush , andrefresh methods must be invoked within a transac
tion context. If there is no transaction context, thejavax.persistence.TransactionRe-
quiredException is thrown.

If an argument to thecreateQuery , createNamedQuery , or createNativeQuery method is
not a valid query string or result set specification for the method, the IllegalArgumentException m
thrown or the query execution will fail.

Runtime exceptions thrown by the methods of theEntityManager interface will cause the current
transaction to be rolled back.

The methodsclose , isOpen , and getTransaction are used to manage application-manag
entity managers and their lifecycle. See Section 5.2.2, “Obtaining an Application-managed Entity
ager”.

3.1.2 Example of Use of EntityManager API

@Stateless public class OrderEntry {

 @PersistenceContext EntityManager em;

 public void enterOrder(int custID, Order newOrder) {
 Customer cust = (Customer)em.find("Customer", custID);
 cust.getOrders().add(newOrder);
 newOrder.setCustomer(cust);
 }
}

3.2 Entity Instance’s Life Cycle

This section describes theEntityManager operations for managing an entity instance’s lifecycle. A
entity instance may be characterized as being new, managed, detached, or removed.

• A new entity instance has no persistent identity, and is not yet associated with a persis
context.

• A managed entity instance is an instance with a persistent identity that is currently asso
with a persistence context.
41 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Entity Instance’s Life Cycle

Sun Microsystems, Inc.

ger)

ersis-

he cas-

at or

rsist
other

tion

no-

n is
nno-

oper-
tities
• A detached entity instance is an instance with a persistent identity that is not (or no lon
associated with a persistence context.

• A removed entity instance is an instance with a persistent identity, associated with a p
tence context, that is scheduled for removal from the database.

The following subsections describe the effect of lifecycle operations upon entities. Use of thecascade
annotation element may be used to propagate the effect of an operation to associated entities. T
cade functionality is most typically used in parent-child relationships.

3.2.1 Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invoking thepersist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an entityX are as follows:

• If X is a new entity, it becomes managed. The entity X will be entered into the database
before transaction commit or as a result of the flush operation.

• If X is a preexisting managed entity, it is ignored by the persist operation. However, the pe
operation is cascaded to entities referenced by X, if the relationships from X to these
entities is annotated with thecascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

• If X is a removed entity, it becomes managed.

• If X is a detached object, an IllegalArgumentException will be thrown by the persist opera
(or the transaction commit will fail).

• For all entities Y referenced by a relationship from X, if the relationship to Y has been an
tated with thecascade element valuecascade=PERSIST or cascade=ALL , the persist
operation is applied to Y.

3.2.2 Removal

A managed entity instance becomes removed by invoking theremove method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

• If X is a new entity, it is ignored by the remove operation. However, the remove operatio
cascaded to entities referenced by X, if the relationships from X to these other entities is a
tated with thecascade=REMOVE or cascade=ALL annotation element value.

• If X is a managed entity, the remove operation causes it to become removed. The remove
ation is cascaded to entities referenced by X, if the relationships from X to these other en
is annotated with thecascade=REMOVE or cascade=ALL annotation element value.
 6/25/05 42

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

tion

as a

roniza-
speci-

s

nt

re
es
n

"

r times
n.

en

has

sh
will

ion-
hro-
• If X is a detached entity, an IllegalArgumentException will be thrown by the remove opera
(or the transaction commit will fail).

• If X is a removed entity, it is ignored by the remove operation.

• A removed entity X will be removed from the database at or before transaction commit or
result of the flush operation. Accessing a removed entity is undefined.

3.2.3 Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synch
tion involving writing to the database any updates to persistent entities and their relationships as
fied above.[7]

Bidirectional relationships between managed entities will be persisted based on reference
held by the owning side of the relationship. It is the developer’s responsibility to keep the
in-memory references held on the owning side and those held on the inverse side consiste
with each other when they change.

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they a
synchronized to the database. Developers may choose whether or not to update referenc
held by the inverse side when the owning side changes, depending on whether the applicatio
can handle out-of-date references on the inverse side until the next database refresh occurs.

The persistence provider runtime is permitted to perform synchronization to the database at othe
as well, for example, before query execution. Theflush method can be used to force synchronizatio
It applies to entities associated with the persistence context. TheFlushMode annotation can be used to
further control synchronization semantics.

The semantics of the flush operation, applied to an entityX are as follows:

• If X is a managed entity, it is synchronized to the database.

• For all entities Y referenced by a relationship from X, if the relationship to Y has be
annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL , the persist operation is applied to Y.

• For any entity Y referenced by a relationship from X, where the relationship to Y
not been annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL :

• If Y is new or removed, an IllegalStateException will be thrown by the flu
operation (and the transaction rolled back) or the transaction commit
fail.

• If Y is detached, the semantics depend upon the ownership of the relat
ship. If X owns the relationship, any changes to the relationship are sync

[7] It does not involve a refresh of any managed entities unless therefresh operation is explicitly invoked on those entities.
43 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Entity Instance’s Life Cycle

Sun Microsystems, Inc.

vior

t.

become

the per-

safely

use.

tate

socia-

e per-
 state.

, to a

tities

ame

f X is
nized with the database; otherwise, if Y owns the relationships, the beha
is undefined.

• If X is a removed entity, it is removed from the database. No cascade options are relevan

3.2.4 Detached Entities
When the persistence context ends, all managed entity instances associated with the context
detached.

The application may safely access the available state of available detached entity instances after
sistence context ends. The available state includes:

• Any persistent field or property not markedfetch=LAZY

• Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the state of an associated instance may only be
accessed if the associated instance is available. The available instances include:

• Any entity instance retrieved usingfind ()

• Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN cla

• Any entity instance for which an instance variable holding non-primary-key persistent s
was accessed by the application

• Any entity instance that may be reached from another available instance by navigating as
tions markedfetch=EAGER

Detached entity instances continue to live outside of the persistence context in which they wer
sisted or retrieved, and their state is no longer guaranteed to be synchronized with the database

A detached entity may also result from serializing an entity, or otherwise passing it by value—e.g
separate application tier, through a remote interface, etc.—and the same rules apply.

3.2.4.1 Merging Detached Entity State

Themerge operation allows for the propagation of state from detached entities onto persistent en
managed by the EntityManager.

The semantics of themerge operation applied to an entity X are as follows:

• If X is a detached entity, it is copied onto a pre-existing managed entity instance X' of the s
identity or a new managed copy of X is created.

• If X is a new entity instance, a new managed entity instance X' is created and the state o
copied into the new managed entity instance X'.
 6/25/05 44

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

rge

ion is
anno-

-
ct as

s a

tation

e cur-

d.

r-

cas-

ist

ay be

tached.
• If X is a removed entity instance, an IllegalArgumentException will be thrown by the me
operation (or the transaction commit will fail).

• If X is a managed entity, it is ignored by the merge operation, however, the merge operat
cascaded to entities referenced by relationships from X if these relationships have been
tated with thecascade element valuecascade=MERGE or cascade=ALL annotation.

• For all entities Y referenced by relationships from X having thecascade element value
cascade=MERGE or cascade=ALL , Y is merged recursively as Y'. For all such Y refer
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same obje
X'.)

• If X is an entity merged to X', with a reference to another entity Y, wherecascade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yield
reference to a managed object Y' with the same persistent identity as Y.

Version columns used by the entity should be checked by the persistence runtime implemen
during the merge operation or at flush or commit time.

3.2.5 Managed Instances
Thecontains() method can be used to determine whether an entity instance is managed in th
rent persistence context.

Thecontains method returns true:

• If the entity has been retrieved from the database, and has not been removed or detache

• If the entity instance is new, and thepersist method has been called on the entity or the pe
sist operation has been cascaded to it.

Thecontains method returns false:

• If the instance is detached.

• If the remove method has been called on the entity, or the remove operation has been
caded to it.

• If the instance is new, and thepersist method has not been called on the entity or the pers
operation has not been cascaded to it.

Note that the effect of the cascading of persist or remove is immediately visible to thecontains
method, whereas the actual insertion or deletion of the database representation for the entity m
deferred until the end of transaction.

3.2.6 Transaction Rollback
Transaction rollback causes a pre-existing managed instance or removed instance to become de
45 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Persistence Context

Sun Microsystems, Inc.

d that of

f type

ted

ce con-

time the
trans-

bjects
Section

ents.
uch.

s. An

tically
3.3 Persistence Context

A persistence context may either be scoped to a transaction, or have a scope that extends beyon
a single transaction (extended persistence context). The enumPersistenceContextType is used
to define the persistence context scope:

public enum PersistenceContextType {
 TRANSACTION,
 EXTENDED
}

By default, a persistence context's lifecycle corresponds to the scope of a transaction (i.e., it is o
PersistenceContextType.TRANSACTION).

The PersistenceContextType is that defined when the EntityManager instance is crea
(whether explicitly, or in conjunction with injection or JNDI lookup). See Section 5.4.

3.3.1 Extended Persistence Context

A persistence context may be maintained across multiple transactions by specifying the persisten
text as an extended persistence context.

When an extended persistence context is used, the extended persistence context exists from the
EntityManager instance is created until it is closed. This persistence context might span multiple
actions and non-transactional invocations of the EntityManager.

An EntityManager with an extended persistence context maintains its references to the entity o
after a transaction has committed. Those objects remain managed by the EntityManager. See
5.4.

3.4 Entity Listeners and Callback Methods

A method may be designated as a callback method to receive notification of entity life cycle ev
Callback methods are annotated with a callback annotation or denoted in the XML descriptor as s[8]

A entity listener class may be used instead of callback methods defined directly on the entity clas
entity listener class is denoted using theEntityListener annotation on the entity class with which
it is associated or denoted in the XML descriptor as such.

Entity listeners are stateless. The lifecycle of an entity listener is unspecified. Listeners are sta
configured for an entity class by use of metadata annotations or the XML descriptor.

The entity listener class must have a public no-arg constructor.

[8] An entity class, even when used within the context of an EJB application, must not implement thejavax.ejb.EntityBean
callback interface.
 6/25/05 46

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

allback
ethod

ck.

class
ass and

ack

r.

llback

ss or
The annotations used for callback methods on the entity class and for callback methods on the c
listener class are the same. The signatures of individual methods, however, differ. The same m
may be annotated with more than one callback annotation, thus serving for more than one callba

Any subset or combination of annotations appropriate to the entity may be specified on the entity
or on the associated listener class. The same callback may not be specified on both the entity cl
the listener class or more than once on either class.

The following rules apply to callbacks:

• Callback methods may throw runtime exceptions. A runtime exception thrown by a callb
method that executes within a transaction causes that transaction to be rolled back.

• Callback methods must not throw application exceptions.

• Callbacks can invoke JNDI, JDBC, JMS, and enterprise beans, but not the EntityManage

Callback methods defined on an entity class have the following signature:

public void <METHOD>()

Callback methods defined on an entity listener class have the following signature:

public void <METHOD>(Object)

whereObject may be declared as the actual entity type, which is the argument passed to the ca
method at runtime.

Tthe following lifecycle event callbacks are supported. They may be defined on the entity cla
entity listener class.

• PrePersist

• PostPersist

• PreRemove

• PostRemove

• PreUpdate

• PostUpdate

• PostLoad
47 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Entity Listeners and Callback Methods

Sun Microsystems, Inc.

ec-
ection
. The

and
n to be

ive
lso be

ay be
oper-

e call-

ns to
e state

r

rsis-

rsed.

tener
erclass
t spe-

plica-

ny.

y

3.4.1 Semantics of the Life Cycle Callback Methods for Entities
ThePrePersist andPreRemove callback methods are invoked for a given entity before the resp
tive EntityManager persist and remove operations for that entity are executed, as specified in s
3.2. These callbacks will also be invoked on all entities to which these operations are cascaded
PrePersist andPreRemove methods will always be invoked as part of the synchronous persist
remove operations. Exceptions thrown by any of these callbacks cause the current transactio
rolled back.

ThePostPersist andPostRemove callback methods are invoked for an entity after the respect
EntityManager persist and remove operations for that entity are executed. These callbacks will a
invoked on all entities to which these operations are cascaded. ThePostPersist andPostRemove
methods will be invoked after the database insert and delete operations respectively. This m
directly after the persist or remove operations have been invoked or it may be directly after a flush
ation has occurred or it may be at the end of the transaction. Exceptions thrown by any of thes
backs cause the current transaction to be rolled back.

ThePreUpdate andPostUpdate callbacks occur before and after the database update operatio
entity data respectively. This may be at the time the entity state is updated or it may be at the tim
is flushed to the database or at the end of the transaction.

Note that it is implementation-dependent as to whetherPreUpdate andPostUpdate call-
backs occur when an entity is persisted and subsequently modified in a single transaction o
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

ThePostLoad method for an entity is invoked after the entity has been loaded into the current pe
tence context from the database or after the refresh operation has been applied to it. ThePostLoad
method is invoked before a query result is returned or accessed or before an association is trave

If a superclass of an entity class on which a callback is defined (either directly or on a callback lis
class for the entity class) specifies the same callback annotation, the callback defined by the sup
is not invoked. If the entity class does not define such a callback, the callback defined by the mos
cific superclass is invoked.

The entity callback methods are invoked in the transaction and security contexts of the calling ap
tion.

The JNDI context for the entity callback methods is defined by that of the calling component, if a

Portable applications must not invokeEntityManager or Query operations or access other entit
instances in a callback method.[9]

[9] The semantics of such operations may be standardized in a future release of this specification.
 6/25/05 48

Query API Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

uery
3.4.2 Example
@Entity
@EntityListener(com.acme.AlertMonitor.class)
public class AccountBean implements Account {

Long accountId;
Integer balance;
boolean preferred;

 public Long getAccountId() { ... }
 public Integer getBalance() { ... }
 @Transient // because status depends upon non-persistent context
 public boolean isPreferred() { ... }

 public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException {... }

 @PrePersist
 public void validateCreate() {
 if (getBalance() < MIN_REQUIRED_BALANCE)
 throw new AccountException("Insufficient balance to open an
account");
 }

 @PostLoad
 public void adjustPreferredStatus() {
 preferred =
 (getBalance() >= AccountManager.getPreferredStatu-
sLevel());
 }
}

public class AlertMonitor {

 @PostPersist
 public void newAccountAlert(Account acct) {
 Alerts.sendMarketingInfo(acct.getAccountId(), acct.getBal-
ance());

3.5 Query API

The Query API is used for both static queries (i.e., named queries) and dynamic queries. The Q
API also supports named parameter binding and pagination control.
49 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Query API

Sun Microsystems, Inc.
3.5.1 Query Interface
package javax.persistence;

import java.math.BigDecimal;
import java.util.Calendar;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

/**
 * Interface used to control query execution.
 */
public interface Query {

/**
 * Execute a SELECT query and return the query results
 * as a List.
 * @return a list of the results
 * @throws IllegalStateException if called for an EJB QL
 * UPDATE or DELETE statement
 */
public List getResultList();

/**
 * Execute a SELECT query that returns a single result.
 * @return the result
 * @throws EntityNotFoundException if there is no result
 * @throws NonUniqueResultException if more than one result
 * @throws IllegalStateException if called for an EJB QL
 * UPDATE or DELETE statement
 */
public Object getSingleResult();

/**
 * Execute an update or delete statement.
 * @return the number of entities updated or deleted
 * @throws IllegalStateException if called for an EJB QL
 * SELECT statement
 * @throws TransactionRequiredException if there is
 * no transaction
 */
public int executeUpdate();

/**
 * Set the maximum number of results to retrieve.
 * @param maxResult
 * @return the same query instance
 * @throws IllegalArgumentException if argument is negative
 */
public Query setMaxResults(int maxResult);

/**
 * Set the position of the first result to retrieve.
 * @param start position of the first result, numbered from 0
 * @return the same query instance
 * @throws IllegalArgumentException if argument is negative
 */
public Query setFirstResult(int startPosition);
 6/25/05 50

Query API Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.
/**
 * Set an implementation-specific hint.
 * If the hint name is not recognized, it is silently ignored.
 * @param hintName
 * @param value
 * @return the same query instance

* @throws IllegalArgumentException if the second argument is not
 * valid for the implementation
 */
public Query setHint(String hintName, Object value);

/**
 * Bind an argument to a named parameter.
 * @param name the parameter name
 * @param value
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 * or argument is of incorrect type
 */
public Query setParameter(String name, Object value);

/**
 * Bind an instance of java.util.Date to a named parameter.
 * @param name
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 */
public Query setParameter(String name, Date value, TemporalType

temporalType);

/**
 * Bind an instance of java.util.Calendar to a named parameter.
 * @param name
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 */
public Query setParameter(String name, Calendar value, Temporal-

Type temporalType);

/**
 * Bind an argument to a positional parameter.
 * @param position
 * @param value
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 * or argument is of incorrect type
 */
public Query setParameter(int position, Object value);
51 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Query API

Sun Microsystems, Inc.

f type

re-
corre-
r the
y may

o

/**
 * Bind an instance of java.util.Date to a positional parameter.
 * @param position
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 */
public Query setParameter(int position, Date value, TemporalType

temporalType);

/**
 * Bind an instance of java.util.Calendar to a positional param-

eter.
 * @param position
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 */
public Query setParameter(int position, Calendar value, Temporal-

Type temporalType);

/**
 * Set the flush mode type to be used for the query execution.
 * @param flushMode
 */
public Query setFlushMode(FlushModeType flushMode);

}

The elements of a query result whose SELECT clause consists of more than one value are o
Object[] .

An IllegalArgumentException is thrown if a parameter name is specified that does not cor
spond to a named parameter in the query string, if a positional value is specified that does not
spond to a positional parameter in the query string, or if the type of the parameter is not valid fo
query. This exception may be thrown when the parameter is bound, or the execution of the quer
fail.

Runtime exceptions thrown by the methods of theQuery interface will cause the current transaction t
be rolled back.

3.5.1.1 Example

public List findWithName(String name) {
 return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
 .setParameter("custName", name)
 .setMaxResults(10)
 .getResultList();
}

 6/25/05 52

Query API Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

fiers
native

QL or in

only
. The
ns.

s, sca-
ntity

o
ve
3.5.2 Parameter Names
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identi
defined in Section 4.4.1. The use of named parameters applies to EJB QL, and is not defined for
queries. Only positional parameter binding may be portably used for native queries.

3.5.3 Named Queries
Named queries are static queries expressed in metadata. Named queries can be defined in EJB
SQL.

The following is an example of the definition of an EJB QL named query:

@NamedQuery(
 name="findAllCustomersWithName",
 queryString="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;
...
customers = em.createNamedQuery("findAllCustomersWithName")
 .setParameter("custName", "Smith")
 .getResultList();

3.5.4 Polymorphic Queries

By default, all queries are polymorphic. That is, the FROM clause of a query designates not
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well
instances returned by a query include instances of the subclasses that satisfy the query conditio

For example, the query

select avg(e.salary) from Employee e where e.salary > 80000

returns the average salary of all employees, including subtypes ofEmployee , such asManager and
Exempt .

3.5.5 SQL Queries
Queries may be expressed in native SQL. The result of a native SQL query may consist of entitie
lar values, or a combination of the two. The entities returned by a query may be of different e
types.

The SQL query facility is intended to provide support for those cases where it is necessary t
use the native SQL of the target database in use (and/or where EJB QL cannot be used). Nati
SQL queries are not expected to be portable across databases.
53 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Query API

Sun Microsystems, Inc.

to the

results

d and

sing
ed in

The

y

ped to
ained
When multiple entities are returned by a SQL query, the entities must be specified and mapped
column results of the SQL statement in aSqlResultSetMapping metadata definition. This result
set mapping metadata can then be used by the persistence provider runtime to map the JDBC
into the expected objects. See Section 8.3.4 for the definition of theSqlResultSetMapping meta-
data annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form may be use
SqlResultSetMapping metadata is not required.

This is illustrated in the following example in which a native SQL query is created dynamically u
thecreateNativeQuery method and the entity class that specifies the type of the result is pass
as an argument.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",

 com.acme.Order.class);

When executed, this query will return a Collection of all Order entities for items named "widget".
same results could also be obtained usingSqlResultSetMapping :

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
"WidgetOrderResults");

In this case, the metadata for the query result type might be specified as follows:

@SqlResultSetMapping(name="WidgetOrderResults",
 entities=@EntityResult(entityClass=com.acme.Order.class))

The following query andSqlResultSetMapping metadata illustrates the return of multiple entit
types and assumes default metadata and column name defaults.

 Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Item i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderItemResults");

 @SqlResultSetMapping(name="OrderItemResults",
 entities={
 @EntityResult(entityClass=com.acme.Order.class),
 @EntityResult(entityClass=com.acme.Item.class)
 })

When an entity is being returned, the SQL statement should select all of the columns that are map
the entity object. This should include foreign key columns to related entities. The results obt
when insufficient data is available are undefined.
 6/25/05 54

Query API Enterprise JavaBeans 3.0, Public Draft Entity Operations

Sun Microsystems, Inc.

uires

ing for
An example of combining multiple entity types and that includes aliases in the SQL statement req
that the column names be explicitly mapped to the entity fields. TheFieldResult annotation is used
for this purpose.

Query q = em.createNativeQuery(
 "SELECT o.id AS order_id, " +

"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +

"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",

 "OrderItemResults");

 @SqlResultSetMapping(name="OrderItemResults",
 entities={
 @EntityResult(entityClass=com.acme.Order.class, fields={
 @FieldResult(name="id", column="order_id"),
 @FieldResult(name="quantity", column="order_quantity"),
 @FieldResult(name="item", column="order_item")}),
 @EntityResult(entityClass=com.acme.Item.class)
 })

Scalar result types can be included in the query result by specifying theColumnResult annotation in
the metadata.

Query q = em.createNativeQuery(
 "SELECT o.id AS order_id, " +

"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.name AS item_name, " +

"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",

 "OrderResults");

 @SqlResultSetMapping(name="OrderResults",
 entities={
 @EntityResult(entityClass=com.acme.Order.class, fields={
 @FieldResult(name="id", column="order_id"),
 @FieldResult(name="quantity", column="order_quantity"),
 @FieldResult(name="item", column="order_item")})},
 columns={
 @ColumnResult(name="item_name")}
)

The use of named parameters is not defined for native queries. Only positional parameter bind
SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.
55 6/25/05

Entity Operations Enterprise JavaBeans 3.0, Public Draft Query API

Sun Microsystems, Inc.
 6/25/05 56

Overview Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

eir per-
ortable

oper-
sub-

que-
. Named

rough
earlier
ds) as
Chapter 4 Query Language

The Enterprise JavaBeans query language, EJB QL, is used to define queries over entities and th
sistent state. EJB QL enables the application developer to specify the semantics of queries in a p
way, independent of the particular database in use in an enterprise environment.

This specification release augments the previous version of EJB QL defined in [5] with additional
ations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, projection, and
queries. It also provides for the use of EJB QL in dynamic queries.

The full range of EJB QL may be used in both static and dynamic queries. Both static and dynamic
ries may be parameterized. Named parameters as well as positional parameters are supported
parameters, which are new to this specification release, are described in Section 4.6.4.2.

This chapter provides the full definition of the language.

4.1 Overview

EJB QL is a query specification language for dynamic queries and for static queries expressed th
metadata. It applies both to the persistent entities defined by this specification, as well as to the
EJB 2.1 entity beans with container-managed persistence (and their finder and select metho
defined in [1].[10]
57 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Overview

Sun Microsystems, Inc.

re. This
base,
result,

ncluding
model.
es and
s are

nt

er

relation-
of enti-
he path

n

y-

ce of

stract
r-man-

naged

s “EJB
EJB QL can be compiled to a target language, such as SQL, of a database or other persistent sto
allows the execution of queries to be shifted to the native language facilities provided by the data
instead of requiring queries to be executed on the runtime representation of the entity state. As a
query methods can be optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entities, i
their relationships, for its data model, and it defines operators and expressions based on this data
EJB QL uses a SQL-like syntax to select objects or values based on entity abstract schema typ
relationships among them. It is possible to parse and validate EJB QL queries before entitie
deployed because EJB QL is based on abstract schema types.

The term abstract persistence schema refers to the persistent schema abstraction (persiste
entities, their state, and their relationships) over which EJB QL queries operate. EJB QL
translates queries over this persistent schema abstraction into queries that are executed ov
the database schema to which entities are mapped. See Section 4.3.

The developer uses EJB QL to write queries based on the abstract persistence schemas and the
ships defined in the metadata annotations or XML descriptor. The abstract schema types of a set
ties can be used in a query if the entities are defined in the same persistence unit as the query. T
expressions of EJB QL allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the applicatio
and which must be colocated in their mapping to a single database.

Compatibility Note: For EJB 2.1 and earlier entity beans, the scope of the persistence unit is
defined by the ejb-jar file. It is assumed that a single deployment descriptor in an ejb-jar file
constitutes a nondecomposable unit for the container responsible for implementing the
abstract persistence schemas of the entity beans and the relationships defined in the deplo
ment descriptor and the ejb-jar file. Queries can be written by utilizing navigation over the
cmr-fields of related beans supplied in the same ejb-jar file.

EJB QL queries can be used in several different ways:

• as queries for selecting entity objects or values through use of methods of theQuery API
(Section 3.5.1), where the queries are expressed either in metadata or dynamically.

• as queries for selecting entity objects through finder methods defined in the home interfa
EJB 2.1 container-managed entity bean components using the EJB 2.1 API.

• as queries for selecting entity objects or other values derived from an entity bean’s ab
schema type through select methods defined on the entity bean class of EJB 2.1 containe
aged entity bean components using the EJB 2.1 API.

Restrictions upon the use of EJB QL for the finder and select methods of EJB 2.1 container-ma
persistence entity beans are described in [1].

[10] We use the term “entity” in this chapter to refer both to entities as defined by this specification document as well as to the entity
beans with container-managed persistence defined by [1]. Where it is important to distinguish the latter, we refer to them a
2.1 entity beans.”
 6/25/05 58

EJB QL Statement Types Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ent.

adata

pres-

y the

s of

y the

dicate
4.2 EJB QL Statement Types

An EJB QL statement may be either a select statement, an update statement, or a delete statem

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, an EJB QL statement is defined as:

EJB QL :: = select_statement | update_statement | delete_statement

Any EJB QL statement may be constructed dynamically or may be statically defined in a met
annotation or XML descriptor element.

All EJB QL statement types may have parameters.

4.2.1 Select Statements

An EJB QL select statement is a string which consists of the following clauses:

• a SELECT clause, which determines the type of the objects or values to be selected.

• a FROM clause, which provides declarations that designate the domain to which the ex
sions specified in the other clauses of the query apply.

• an optional WHERE clause, which may be used to restrict the results that are returned b
query.

• an optional GROUP BY clause, which allows query results to be aggregated in term
groups.

• an optional HAVING clause, which allows filtering over aggregated groups.

• an optional ORDER BY clause, which may be used to order the results that are returned b
query.

In BNF syntax, an EJB QL select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] in
that the other clauses are optional.

4.2.2 Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities.
59 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Abstract Schema Types and Query Domains

Sun Microsystems, Inc.

HERE

con-

sion is
le dec-
rals.

n pro-

class
r the

ship
ract
ny, a

quired

ned in

ment

ent
In BNF syntax, these operations are defined as:

update_statement :: = update_clause [where_clause]

delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The W
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.11.

Compatibility Note: Update and delete statements are not supported for EJB 2.1 entity beans with
tainer-managed persistence.

4.3 Abstract Schema Types and Query Domains

EJB QL is a typed language, and every expression in EJB QL has a type. The type of an expres
derived from the structure of the expression, the abstract schema types of the identification variab
larations, the types to which the persistent fields and relationships evaluate, and the types of lite

The abstract schema type of an entity is derived from the entity class and the metadata informatio
vided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity can be characterized as follows:

• For every persistent field or get accessor method (for a persistent property) of the entity,
there is a field (“state-field”) whose abstract schema type corresponds to that of the field o
result type of the accessor method.[11]

• For every persistent relationship field or get accessor method (for a persistent relation
property) of the entity class, there is a field (“association-field”) whose type is the abst
schema type of the related entity (or, if the relationship is a one-to-many or many-to-ma
collection of such).[12]

Abstract schema types are specific to the EJB QL data model. The persistence provider is not re
to implement or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entities that are defi
the same persistence unit.

[11] For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmp-field elements of the deploy
descriptor.

[12] For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmr-field elements of the deploym
descriptor.
 6/25/05 60

Abstract Schema Types and Query Domains Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ng the
a types

assigns
be used

.

senting
ypes for

h

The domain of a query may be restricted by thenavigabilityof the relationships of the entity on which it
is based. The association-fields of an entity’s abstract schema type determine navigability. Usi
association-fields and their values, a query can select related entities and use their abstract schem
in the query.

4.3.1 Naming

Entities are designated in EJB QL query strings by their abstract schema names. The developer
unique abstract schema names to entities as part of the development process so that they can
within queries. These unique names are scoped within the persistence unit.

The abstract schema name is defined by thename element of theEntity annotation (or the
entity-name XML descriptor element), and defaults to the unqualified name of the entity class

Compatibility Note: For EJB 2.1 entities, abstract schema names are specified by the
abstract-schema-name elements in the deployment descriptor, and there is a one-to-one
mapping between entity bean abstract schema types and entity bean homes.

4.3.2 Example

This example assumes that the application developer provides several entity classes, repre
orders, products, line items, shipping addresses, and billing addresses. The abstract schema t
these entities areOrder , Product , LineItem , ShippingAddress , and BillingAddress
respectively. These entities are logically in the same persistence unit, as shown in Figure 1.

Figure 1 Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit.

The entitiesShippingAddress andBillingAddress each have one-to-many relationships wit
Order . There is also a one-to-many relationship betweenOrder and Lineitem . The entity
LineItem is related toProduct in a many-to-one relationship.

Order

LineItem

Shipping
Address

Billing
Address

1
m

m

1

m
1

m

1

Product
61 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

Sun Microsystems, Inc.

defined
l-

ne
tems.)

LSE

tities, the
ts, and

ducts

name
e navi-

vari-
in of

ROM
Queries to select orders can be defined by navigating over the association-fields and state-fields
by Order andLineItem . A query to find all orders with pending line items might be written as fo
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineItems AS l
WHERE l.shipped = FALSE

This query navigates over the association-fieldlineItems of the abstract schema typeOrder to find
line items, and uses the state-fieldshipped of LineItem to select those orders that have at least o
line item that has not yet shipped. (Note that this query does not select orders that have no line i

Although predefined reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FA
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to be of typeOrder .

Because the same persistence unit defines the abstract persistence schemas of the related en
developer can also specify a query over orders that utilizes the abstract schema type for produc
hence the state-fields and association-fields of both the abstract schema typesOrder andProduct .
For example, if the abstract schema typeProduct has a state-field namedproductType , a query
over orders can be specified using this state-field. Such a query might be to find all orders for pro
with product type office supplies. An EJB QL query string for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

BecauseOrder is related toProduct by means of the relationships betweenOrder andLineItem
and betweenLineItem and Product , navigation using the association-fieldslineItems and
product is used to express the query. This query is specified by using the abstract schema
Order , which designates the abstract schema type over which the query ranges. The basis for th
gation is provided by the association-fieldslineItems andproduct of the abstract schema types
Order andLineItem respectively.

4.4 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification
ables. An identification variable is an identifier declared in the FROM clause of a query. The doma
the query may be constrained by path expressions.

Identification variables designate instances of a particular entity abstract schema type. The F
clause can contain multiple identification variable declarations separated by a comma (,).

from_clause ::=
FROM identification_variable_declaration

{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*
 6/25/05 62

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

a Java
ntifier

ION,
TE,

n vari-

is

t be

ollow-
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
join ::= join_spec association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

4.4.1 Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with
identifier start character, and all other characters must be Java identifier part characters. An ide
start character is any character for which the methodCharacter.isJavaIdentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the methodCharacter.isJavaIdentifierPart
returns true. The question mark (?) character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB QL:SELECT, FROM, WHERE, UPDATE, DELETE,
JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINCT, OBJECT, NULL, TRUE,
FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN[13], EMPTY, MEMBER, OF, IS, AVG,
MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSIT
CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_DA
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, SOME.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identificatio
ables.

It is recommended that other SQL reserved words also not be as identification variables in EJB
QL queries because they may be used as EJB QL reserved identifiers in future releases of th
specification.

4.4.2 Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.

All identification variables must be declared in the FROM clause. Identification variables canno
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the f
ing in the same persistence unit:

[13] Not currently used in EJB QL; reserved for future use.
63 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

Sun Microsystems, Inc.

y

vari-

iable
bstract

three
denti-
ation
query

QL;

ot be

, more
use.
• entity name (as defined by theEntity annotation orentity-name XML descriptor ele-
ment)

• abstract-schema-name (as defined by theabstract-schema-name deployment descriptor
element for EJB 2.1 entity beans)

• ejb-name (as defined by theejb-name deployment descriptor element for EJB 2.1 entit
beans)

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

In the FROM clause declarationo.lineItems l , the identification variablel evaluates to any
LineItem value directly reachable fromOrder . The association-fieldlineItems is a collection of
instances of the abstract schema typeLineItem and the identification variablel refers to an element
of this collection. The type ofl is the abstract schema type ofLineItem .

An identification variable ranges over the abstract schema type of an entity. An identification var
designates an instance of an entity abstract schema type or an element of a collection of entity a
schema type instances. Identification variables are existentially quantified in an EJB QL query.

An identification variable always designates a reference to a single value. It is declared in one of
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The i
fication variable declarations are evaluated from left to right in the FROM clause, and an identific
variable declaration can use the result of a preceding identification variable declaration of the
string.

4.4.3 Range Variable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of S
optionally, it uses the AS keyword.

range_variable_declaration ::= abstract_schema_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may n
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type
than one identification variable ranging over the abstract schema type is needed in the FROM cla
 6/25/05 64

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

mith.
f the
ith

s
n; that

posed.
aluates

d may

n-ter-
d does

s:

e or

a

The following query returns orders whose quantity is greater than the order quantity for John S
This example illustrates the use of two different identification variables in the FROM clause, both o
abstract schema typeOrder . The SELECT clause of this query determines that it is the orders w
quantities larger than John Smith’s that are returned.

SELECT DISTINCT o1
FROM Order o1, Order o2
WHERE o1.quantity > o2.quantity AND

o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’

4.4.4 Path Expressions

An identification variable followed by the navigation operator (.) and a state-field or association-field i
a path expression. The type of the path expression is the type computed as the result of navigatio
is, the type of the state-field or association-field to which the expression navigates.

Depending on navigability, a path expression that leads to a association-field may be further com
Path expressions can be composed from other path expressions if the original path expression ev
to a single-valued type (not a collection) corresponding to a association-field. Note that a state fiel
correspond to an embedded class. A path expression that ends in asimplestate-field, rather than an
embedded class, is terminal and cannot be further composed.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a no
minal association-field in the path expression is null, the path is considered to have no value, an
not participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follow

single_valued_path_expression ::=
state_field_path_expression | single_valued_association_path_expression

state_field_path_expression ::=
{identification_variable | single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}*single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single_valued_association_field.}*collection_valued_association_field
state_field ::= {embedded_class_state_field.}*simple_state_field

A single_valued_association_field is designated by the name of an association-field in a one-to-on
many-to-one relationship. The type of asingle_valued_association_field and thus a
single_valued_association_path_expression is the abstract schema type of the related entity.

A collection_valued_association_field is designated by the name of an association-field in
one-to-many or a many-to-many relationship. The type of acollection_valued_association_field is a col-
lection of values of the abstract schema type of the related entity.

Navigation to a related entity results in a value of the related entity’s abstract schema type.
65 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

Sun Microsystems, Inc.

corre-

collec-

EJB
ed in

owing:

nd a
esian

reign

icitly

use,
use of
tions.
The evaluation of a path expression terminating in a state-field results in the abstract schema type
sponding to the Java type designated by the state-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
tion. For example, ifo designatesOrder , the path expressiono.lineItems.product is illegal
since navigation tolineItems results in a collection. This case should produce an error when the
QL query string is verified. To handle such a navigation, an identification variable must be declar
the FROM clause to range over the elements of thelineItems collection. Another path expression
must be used to navigate over each such element in the WHERE clause of the query, as in the foll

SELECT DISTINCT l.product
FROM Order AS o, IN(o.lineItems) l

4.4.5 Joins
An inner join may be implicitly specified by the use of a cartesian product in the FROM clause a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cart
product.

The main use case for this generalized style of join is when a join condition does not involve a fo
key relationship that is mapped to an entity relationship.

Example:

select c from Customer c, Employee e where c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than expl
defined joins over entity relationships.

The syntax for explicit join operations is as follows:

join ::= join_spec association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN

The following inner and outer join operation types are supported.

4.4.5.1 Inner Joins (Relationship Joins)
A join over an entity relationship is a typical use case for EJB QL. The IN operator in the FROM cla
described in Section 4.4.6, was introduced by EJB 2.0 for this purpose. This release adds explicit
the JOIN operator to provide a more natural SQL-like syntax and to allow a wider range of opera

The syntax for the inner join operation is

[INNER] JOIN association_path_expression [AS] identification_variable
 6/25/05 66

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ype of

ose

tities

effect

ry. A

n that
tifica-
refer-
For example, the query below joins over the relationship between customers and orders. This t
join typically equates to a join over a foreign key relationship in the database.

SELECT c FROM Customer c JOIN c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT c FROM Customer c INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [5]. It selects th
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1

4.4.5.2 Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of en
where matching values in the join condition may be absent.

The syntax for a left outer join is

LEFT [OUTER] JOIN association_path_expression [AS] identification_variable

For example:

SELECT c FROM Customer c LEFT JOIN c.orders o WHERE c.status = 1

The keyword OUTER may optionally be used:

SELECT c FROM Customer c LEFT OUTER JOIN c.orders o WHERE c.status = 1

4.4.5.3 Fetch Joins

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

A FETCH JOIN enables the fetching of an association as a side effect of the execution of a que
FETCH JOIN is specified over an entity and its related entities.

The syntax for a fetch join is

fetch_join ::= [LEFT [OUTER] | INNER] JOIN FETCH association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an associatio
belongs to an entity that is returned as a result of the query. It is not permitted to specify an iden
tion variable for the entities referenced by the right side of the FETCH JOIN clause, and hence
ences to the implicitly fetched entities cannot appear elsewhere in the query.
67 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

Sun Microsystems, Inc.

ustom-
lds or
ship
s.

vigation
can be
s.

r, the
e path
ssoci-

of

t the
ld use
hether
The following query returns a set of customers. As a side effect, the associated orders for those c
ers are also retrieved, even though they are not part of the explicit query result. The persistent fie
properties of the orders that are eagerly fetched are fully initialized. The initialization of the relation
properties of the orders that are retrieved is determined by the metadata for the Order entity clas

SELECT DISTINCT c
FROM Customer c LEFT JOIN FETCH c.orders
WHERE c.address.state = ’CA’

4.4.6 Collection Member Declarations

An identification variable declared by acollection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression. Such a path expression represents a na
involving the association-fields of an entity abstract schema type. Because a path expression
based on another path expression, the navigation can use the association-fields of related entitie

An identification variable of a collection member declaration is declared using a special operato
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. Th
expression evaluates to a collection type specified as a result of navigation to a collection-valued a
ation-field of an entity abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

may equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l
WHERE l.product.productType = ‘office_supplies’

In this example,lineItems is the name of an association-field whose value is a collection
instances of the abstract schema typeLineItem . The identification variablel designates a member of
this collection, asingleLineItem abstract schema type instance. In this example,o is an identifica-
tion variable of the abstract schema typeOrder .

4.4.7 EJB QL and SQL

EJB QL treats the FROM clause similarly to SQL in that the declared identification variables affec
results of the query even if they are not used in the WHERE clause. Application developers shou
caution in defining identification variables because the domain of the query can depend on w
there are any values of the declared type.
 6/25/05 68

WHERE Clause Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

xisting
d no

only
. The

es that
e of an

entity
ult as

sion of

n

der con-

tabase.
For example, the FROM clause below defines a query over all orders that have line items and e
products. If there are noProduct instances in the database, the domain of the query is empty an
order is selected.

SELECT o
FROM Order AS o, IN(o.lineItems) l, Product p

4.4.8 Polymorphism
EJB QL queries are automatically polymorphic. The FROM clause of a query designates not
instances of the specific entity class(es) to which explicitly refers but of subclasses as well
instances returned by a query include instances of the subclasses that satisfy the query criteria.[14]

4.5 WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or valu
satisfy the expression. The WHERE clause restricts the result of a select statement or the scop
update or delete operation.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an
class. The HAVING construct enables conditions to be specified that further restrict the query res
restrictions upon the groups.

The syntax of the HAVING clause is as follows:

having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.7.

4.6 Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expres
the WHERE clause or HAVING clause.

Note that state-fields that are mapped in serialized form or as lobs may not be portably used i
conditional expressions[15].

[14] Such query polymorphism does not apply to EJB 2.1 entity beans, since they do not support inheritance. We plan to consi
structs to enable restriction of the polymorphism of queries in a future release.

[15] The implementation is not expected to perform such query operations involving such fields in memory rather than in the da
69 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Sun Microsystems, Inc.

gle
ava

xact
r

or a
ers in

th the

TE
n vari-
use.

that
stract

e mixed
4.6.1 Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a sin
quote is represented by two single quotes—for example: ‘literal’’s’. EJB QL string literals, like J
String literals, use unicode character encoding.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. E
numeric literals support numbers in the range of Javalong . Exact numeric literals use the Java intege
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2,
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numb
the range of Javadouble . Approximate literals use the Java floating point literal syntax.

Appropriate suffixes may be used to indicate the specific type of a numeric literal in accordance wi
Java Language Specification.

The boolean literals areTRUE andFALSE.

Although predefined reserved literals appear in upper case, they are case insensitive.

4.6.2 Identification Variables

All identification variables used in the WHERE or HAVING clause of an EJB QL SELECT or DELE
statement must be declared in the FROM clause, as described in Section 4.4.2. The identificatio
ables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE cla

Identification variables are existentially quantified in the WHERE and HAVING clause. This means
an identification variable represents a member of a collection or an instance of an entity’s ab
schema type. An identification variable never designates a collection in its entirety.

4.6.3 Path Expressions

It is illegal to use acollection_valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in an empty_collection_comparison_expression or
collection_member_expression, or as an argument to the SIZE operator.

4.6.4 Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not b
in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.12.
 6/25/05 70

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ame-
is not
thod.
meter
. It is
stract

fiers

logical

osed of
values,
4.6.4.1 Positional Parameters
The following rules apply to positional parameters.

• Input parameters are designated by the question mark (?) prefix followed by an integer. For
example:?1 .

• Input parameters are numbered starting from 1.

• If the query is associated with a finder or select method, the number of distinct input par
ters must not exceed the number of input parameters for the finder or select method. It
required that the EJB QL query use all of the input parameters for the finder or select me
An input parameter evaluates to the abstract schema type of the corresponding para
defined in the signature of the finder or select method with which the query is associated
the responsibility of the container to map the input parameter to the appropriate ab
schema type value.

4.6.4.2 Named Parameters
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identi
defined in Section 4.4.1.

Example:

SELECT c
FROM Customer c
WHERE c.status = :stat

Section 3.5.1 describes the API for the binding of named query parameters.

Named parameters are not supported for EJB 2.1 finder and select methods.

4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations,
operations, path expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are comp
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric
and numeric literals.

Arithmetic operations use numeric promotion.

Standard bracketing() for ordering expression evaluation is supported.

Conditional expressions are defined as follows:
71 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Sun Microsystems, Inc.

is as
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.

• Navigation operator (.)

• Arithmetic operators:

+, - unary

*, / multiplication and division

+, - addition and subtraction

• Comparison operators :=, >, >=, <, <=, <> (not equal),[NOT] BETWEEN, [NOT] LIKE ,
[NOT] IN , IS [NOT] NULL , IS [NOT] EMPTY, [NOT] MEMBER [OF]

• Logical operators:

NOT

AND

OR

The following sections describe other operators used in specific expressions.

4.6.7 BetweenExpressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression |
string_expression [NOT] BETWEEN string-expression AND string-expression |
datetime_expression [NOT] BETWEEN datetime-expression AND datetime-expression
 6/25/05 72

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ws:

e

the

the
The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.12.

Examples are:

p.age BETWEEN 15 and 19 is equivalent top.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent top.age < 15 OR p.age > 19

4.6.8 In Expr essions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follo

in_expression ::=
state_field_path_expression [NOT] IN (in_item {, in_item}* | subquery)

in_item ::= literal | input_parameter

Thestate_field_path_expression must have a string or numeric value.

The literal and/or input_parameter values must belike the same abstract schema type of th
state_field_path_expression in type. (See Section 4.13).

The results of the subquery must be like the same abstract schema type of
state_field_path_expression in type. Subqueries are discussed in Section 4.6.15, “Subqueries”.

Examples are:

o.country IN (’UK’, ’US’, ’France’) is true forUKand false forPeru , and is equivalent
to the expression(o.country = ’UK’) OR (o.country = ’US’) OR (o.country = ’
France’) .

o.country NOT IN (’UK’, ’US’, ’France’) is false forUKand true forPeru , and is
equivalent to the expressionNOT ((o.country = ’UK’) OR (o.country = ’US’) OR
(o.country = ’France’)) .

There must be at least one element in the comma separated list that defines the set of values forIN
expression.

If the value of astate_field_path_expression in an IN or NOT IN expression isNULLor unknown, the
value of the expression is unknown.
73 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Sun Microsystems, Inc.

fol-

tand for
ed
er-

ws:

ameter

an
4.6.9 Lik eExpressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as
lows:

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. Thepattern_value is a string literal or a string-valued
input parameter in which an underscore (_) stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters s
themselves. The optionalescape_character is a single-character string literal or a character-valu
input parameter (i.e.,char or Character) and is used to escape the special meaning of the und
score and percent characters inpattern_value.[16]

Examples are:

• address.phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

• asentence.word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

• aword.underscored LIKE ‘_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

• address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

If the value of thestring_expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If theescape_character is specified and isNULL, the value of the LIKE expres-
sion is unknown.

4.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follo

{single_valued_path_expression | input_parameter } IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input par
is aNULL value.

4.6.11 Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

[16] Refer to [4] for a more precise characterization of these rules.
 6/25/05 74

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ession

ion is

collec-

R OF
f the
in the
is

ne or
This expression tests whether or not the collection designated by the collection-valued path expr
is empty (i.e, has no elements).

Example:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison express
unknown, the value of the empty comparison expression is unknown.

4.6.12 Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF[17] in an
collection_member_expression is as follows:

entity_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_expression ::=

single_valued_association_path_expression |
identification_variable |
input_parameter

This expression tests whether the designated value is a member of the collection specified by the
tion-valued path expression.

If the collection valued path expression designates an empty collection, the value of the MEMBE
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, i
value of the collection-valued path expression or single-valued association-field path expression
collection member expression isNULL or unknown, the value of the collection member expression
unknown.

4.6.13 Exists Expressions
An EXISTS expression is a predicate that is true only if the result of the subquery consists of o
more values and that is false otherwise.

The syntax of an exists expression is

exists_expression::= [NOT] EXISTS (subquery)

[17] The use of the reserved word OF is optional in this expression.
75 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Sun Microsystems, Inc.

val-
ty, the

ome
s with

The
e. See

will be
Example:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
 SELECT spouseEmp
 FROM Employee spouseEmp
 WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

4.6.14 All or Any Expr essions
An ALL conditional expression is a predicate that is true if the comparison operation is true for all
ues in the result of the subquery, and that is otherwise false. If the result of the subquery is emp
ALL condition is true.

An ANY conditional expression is a predicate that is true if the comparison operation is true for s
value in the result of the subquery, and that is otherwise false. The keyword SOME is synonymou
ANY. If the result of the subquery is empty, the ANY or SOME condition is false.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>.
result of the subquery must be like that of the other argument to the comparison operator in typ
Section 4.13.

The syntax of an ALL or ANY expression is specified as follows:

all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (

SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

4.6.15 Subqueries
Subqueries may be used in the WHERE or HAVING clause.[18]

The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

[18] Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause
considered in a later release of this specification.
 6/25/05 76

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ubquery
ari-

G

ional
subquery_from_clause ::=
FROM subselect_identification_variable_declaration

{, subselect_identification_variable_declaration}*
subselect_identification_variable_declaration ::=

identification_variable_declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration

simple_select_expression::=
single_valued_path_expression |
aggregate_select_expression |
identification_variable

Examples:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
 SELECT spouseEmp
 FROM Employee spouseEmp
 WHERE spouseEmp = emp.spouse)

SELECT c
FROM Customer c
WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar s
(i.e., produce a single result). This is illustrated in the following example involving a numeric comp
son operation.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
 SELECT avg(c.balanceOwed) FROM Customer c)

4.6.16 Functional Expressions

EJB QL includes the following built-in functions, which may be used in the WHERE or HAVIN
clause of a query.

If the value of any argument to a functional expression is null or unknown, the value of the funct
expression is unknown.

4.6.16.1 String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,

simple_arithmetic_expression, simple_arithmetic_expression) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)
77 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Sun Microsystems, Inc.

gth of
d by 1.

not

turn a

pec-
ment
ument

ning of
, 0 is

same

 re

 tha
trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and len
the substring to be returned. These arguments are integers. The first position of a string is denote
The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is
specified, it is assumed to be space (or blank). The optionaltrim_character is a single-character string
literal or a character-valued input parameter (i.e.,char or Character)[19]. The TRIM function
returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively. They re
string.

The LOCATE function returns the position of a given string within a string, starting the search at a s
ified position. It returns the first position at which the string was found as an integer. The first argu
is the string to be located; the second argument is the string to be searched; the optional third arg
is an integer that represents the string position at which the search is started (by default, the begin
the string to be searched). The first position in a string is denoted by 1. If the string is not found
returned.[20]

The LENGTH function returns the length of the string in characters as an integer.

4.6.16.2 Arithmetic Functions

functions_returning_numerics::=
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.

The MOD function takes two integer arguments and returns an integer.

[19] Note that not all databases support the use of a trim character other than the space character; use of this argument maysult in
queries that are not portable.

[20] Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in queriest are
not portable.
 6/25/05 78

GROUP BY, HAVING Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ion is

l as the

HAV-
itions

lying
. The
se.

esult

, any
n) must
me for

LECT

le or
ession,
The SIZE function returns an integer value, the number of elements of the collection. If the collect
empty, the SIZE function evaluates to zero.

Numeric arguments to these functions may correspond to the numeric Java object types as wel
primitive numeric types.

4.7 GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The
ING construct enables conditions to be specified that further restrict the query result. Such cond
are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= state_field_path_expression
having_clause ::= HAVING conditional_expression

If the query contains both a WHERE clause and a GROUP BY clause, the effect is that of first app
the where clause, and then forming the groups and filtering them according to the HAVING clause
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clau

If there is no GROUP BY clause and the HAVING clause is used, the effect is that of treating the r
of the query as a single group.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely
property that appears in the SELECT clause (other than as an argument to an aggregate functio
also appear in the GROUP BY clause. In forming the groups, null values are treated as the sa
grouping purposes.

For example:

SELECT c.status, avg(c.filledOrderCount), count(c)
FROM Customer c
GROUP BY c.status
HAVING c.status IN (1, 2)

4.8 SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SE
clause of a query.

The SELECT clause may contain one or more of the following elements: a single range variab
identification variable that ranges over an entity abstract schema type, a single-valued path expr
an aggregate select expression, a constructor expression.
79 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft SELECT Clause

Sun Microsystems, Inc.

e
in
t

the
sions.

query

uery

d

-

In the case of an EJB 2.1 select method, the SELECT clause is restricted to contain one of th
above elements. In the case of a finder method, the SELECT clause is restricted to conta
either a single range variable or a single-valued path expression that evaluates to the abstrac
schema type of the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |
aggregate_select_expression |
identification_variable |
OBJECT(identification_variable) |
constructor_expression

constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)

constructor_item ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable | state_field_path_expression |

single_valued_association_path_expression)

All standalone identification variables in the SELECT clause may optionally be qualified by
OBJECT operator. The SELECT clause must not use the OBJECT operator to qualify path expres

For example:

SELECT c.id, c.status
FROM Customer c JOIN c.orders o
WHERE o.count > 100

Note that the SELECT clause must be specified to return only single-valued expressions. The
below is therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the q
result.

If DISTINCT is not specified, duplicate values are not eliminated unless the query is specifie
for a finder or select method whose result type isjava.util.Set. If a query is specified
for a finder or select method whose result type isjava.util.Set , but does not specify DIS-
TINCT, the container must interpret the query as if SELECT DISTINCT had been specified. In
general, however, the application developer should specify the DISTINCT keyword when writ
ing queries for methods that returnjava.util.Set .
 6/25/05 80

SELECT Clause Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

cified
be fully

in the

ll, that
d to

y
et

-

oduce
t type

ession.

VG,

regate
ate in
iable.

and
es, or
4.8.1 Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return a collection of Java instances. The spe
class is not required to be an entity or to be mapped to the database. The constructor name must
qualified.

If an entity class name is specified in the SELECT NEW clause, the resulting entity instances are
new state.

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer c JOIN c.orders o
WHERE o.count > 100

4.8.2 Null Values in the Query Result

If the result of an EJB QL query corresponds to a association-field or state-field whose value is nu
null value is returned in the result of the query method. The IS NOT NULL construct can be use
eliminate such null values from the result set of the query.

In the case of queries that are associated with finder or select methods for EJB 2.1 entit
beans, if the finder or select method is a single-object finder or select method, and the result s
of the query consists of a single null value, the container must return the null value as the
result of the method. If the result set of a query for a single-object finder or select method con
tains more than one value (whether non-null, null, or a combination), the container must throw
the FinderException.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot pr
NULL values in the query result. An EJB QL query that returns such a state-field type as a resul
must not return a null value.

4.8.3 Aggregate Functions in the SELECT Clause
The result of an EJB QL query may be the result of an aggregate function applied to a path expr

The following aggregate functions can be used in the SELECT clause of an EJB QL query: A
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the agg
function must terminate in a state-field. The path expression argument to COUNT may termin
either a state-field or a association-field, or the argument to COUNT may be an identification var

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX
MIN must correspond to orderable state-field types (i.e., numeric types, string types, character typ
date types).

The Java type that is contained in the result of a query using an aggregate function is as follows[21]:

[21] The rules for finder and select method result types are defined in Section 4.10.1.
81 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft SELECT Clause

Sun Microsystems, Inc.

ou-
elds

be

regate

y that

yword

er or
• COUNT returns Long.

• MAX, MIN return the type of the state-field to which they are applied.

• AVG returns Double.

• SUM returns Long when applied to state-fields of integral types (other than BigInteger); D
ble when applied to state-fields of floating point types; BigInteger when applied to state-fi
of type BigInteger; and BigDecimal when applied to state-fields of type BigDecimal.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the agg
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specif
duplicate values are to be eliminated before the aggregate function is applied.[22]

Null values are eliminated before the aggregate function is applied, regardless of whether the ke
DISTINCT is specified.

4.8.4 Examples

The following example returns all line items related to some order:

SELECT l
FROM Order o JOIN o.lineItems l

The following query returns all line items regardless of whether a line item is related to any ord
product:

SELECT l FROM LineItems AS l

The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

[22] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.
 6/25/05 82

ORDER BY Clause Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

spec-

.

of the

ma
The following query returns the total number of orders.

SELECT COUNT(o)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been
ified.

SELECT COUNT(l.price)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

Note that this is equivalent to:

SELECT COUNT(l)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

AND l.price IS NOT NULL

4.9 ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered

The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, each element of the SELECT clause
query must be one of the following:

1. an identification variable x, optionally denoted as OBJECT(x)

2. a single_valued_association_path_expression

3. a state_field_path_expression

In the first two cases, eachorderby_item must be an orderable state-field of the entity abstract sche
type value returned by the SELECT clause. In the third case, theorderby_item must evaluate to the same
state-field of the same entity abstract schema type as thestate_field_path_expression in the SELECT
clause.
83 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Return Value Types

Sun Microsystems, Inc.

scend-

-null
s not

lause

hema
on, or
For example, the first two queries below are legal, but the third and fourth are not.

SELECT o
FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’
ORDER BY o.quantity, o.totalcost

SELECT o.quantity, a.zipcode
FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’
ORDER BY o.quantity, a.zipcode

The following two queries are not legal because theorderby_item is not reflected in the SELECT clause
of the query.

SELECT p.product_name
FROM Order o JOIN o.lineItems l JOIN l.product p JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
ORDER BY p.price

SELECT p.product_name
FROM Order o, IN(o.lineItems) l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
ORDER BY o.quantity

If more than oneorderby_item is specified, the left-to-right sequence of theorderby_item elements
determines the precedence, whereby the leftmostorderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that de
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non
values in the ordering or all null values must appear after all non-null values in the ordering, but it i
specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY c
is used.

4.10 Return Value Types

The type of the query result specified by the SELECT clause of a query is an entity abstract sc
type, a state-field type, the result of an aggregate function, the result of a construction operati
some sequence of these.

4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

The following rules apply to EJB 2.x finder and select methods:
 6/25/05 84

Return Value Types Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ethod
thod.

e that
finder
inter-
a col-
d is
llec-

e, the
ances
the

nding
func-

sin-
bject
n of

lect
rimi-

lect
ction

object

or an
the

ult
ggre-

ult
the

thod
thod
How the result type of a query is mapped depends on whether the query is defined for a finder m
on the remote home interface, for a finder method on the local home interface, or for a select me

• The result type of a query for a finder method must be the entity bean abstract schema typ
corresponds to the entity bean type of the entity bean on whose home interface the
method is defined. If the query is used for a finder method defined on the remote home
face of the bean, the result of the finder method is the entity bean’s remote interface (or
lection of objects implementing the entity bean’s remote interface). If the finder metho
defined on the local home interface, the result is the entity bean’s local interface (or a co
tion of objects implementing the entity bean’s local interface).

• If the result type of a query for a select method is an entity bean abstract schema typ
return values for the query method are instances of the entity bean’s local interface or inst
of the entity bean’s remote interface, depending on whether the value of
result-type-mapping deployment descriptor element contained in thequery element
for the select method isLocal or Remote . The default value forresult-type-mapping
is Local .

• If the result type of a query used for a select method is an abstract schema type correspo
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

• If the Java type of the cmp-field is an object type and the select method is a
gle-object select method, the result of the select method is an instance of that o
type. If the select method is a multi-object select method, the result is a collectio
instances of that type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a single-object select method, the result of the select method is that p
tive type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a multi-object select method, the result of the select method is a colle
of values of the corresponding wrappered type (e.g., Integer).

• If the select method query is an aggregate query, the select method must be a single-
select method.

• The result type of the select method must be a primitive type, a wrappered type,
object type that is compatible with the standard JDBC conversion mappings for
type of the cmp-field [6].

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is an object type and there are no values to which the a
gate function can be applied, the select method returns null.

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is a primitive type and there are no values to which
aggregate function can be applied, the container must throw theObjectNotFoun-
dException .

• If the aggregate query uses the COUNT operator, the result of the select me
should be an exact numeric type. If there are no values to which the COUNT me
can be applied, the result of the select method is 0.
85 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Bulk Update and Delete Operations

Sun Microsystems, Inc.

uery

asses,

cade to

ld to

sult in
al, bulk
egin-
opera-
The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the q
result is null.

4.11 Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subcl
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

A delete operation only applies to entities of the specified class and its subclasses. It does not cas
related entities.

The new_value specified for an update operation must be compatible in type with the state-fie
which it is assigned.

The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]state_field = new_value
new_value ::=

simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

Caution should be used when executing bulk update or delete operations because they may re
inconsistencies between the database and the entities in the active persistence context. In gener
update and delete operations should only be performed within a separate transaction or at the b
ning of a transaction (before entities have been accessed whose state might be affected by such
tions).
 6/25/05 86

Null Values Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

lue.

lue.

-

Examples:

DELETE
FROM Customer c
WHERE c.status = ‘inactive’

DELETE
FROM Customer c
WHERE c.status = ‘inactive’
 AND c.orders IS EMPTY

UPDATE customer c
SET c.status = ‘outstanding’
WHERE c.balance < 10000
 AND 1000 > (SELECT COUNT(o)
 FROM customer cust JOIN cust.order o)

4.12 Null Values

When the target of a reference does not exist in the database, its value is regarded asNULL. SQL 92
NULL semantics [4] defines the evaluation of conditional expressions containingNULL values.

The following is a brief description of these semantics:

• Comparison or arithmetic operations with a NULL value always yield an unknown value.

• Two NULL values are not considered to be equal, the comparison yields an unknown va

• Comparison or arithmetic operations with an unknown value always yield an unknown va

• The IS NULL and IS NOT NULL operators convert aNULLstate-field or single-valued associ
ation-field value into the respective TRUE or FALSE value.

• Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1 Definition of the AND Operator

AND T F U

T T F U

F F F F

U U F U
87 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Equality and Comparison Semantics

Sun Microsystems, Inc.

lue.
ped to
mpari-

r is the
e
tion
pt for

ry key
Note: EJB QL defines the empty string, ‘’, as a string with 0 length, which is not equal to a NULL va
However, NULL values and empty strings may not always be distinguished when queries are map
some databases. Application developers should therefore not rely on the semantics of EJB QL co
sons involving the empty string and NULL value.

4.13 Equality and Comparison Semantics

EJB QL only permits the values oflike types to be compared. A type islike another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the othe
wrappered Java class type equivalent (e.g.,int andInteger are like types in this sense). There is on
exception to this rule: it is valid to compare numeric values for which the rules of numeric promo
apply. Conditional expressions attempting to compare non-like type values are disallowed exce
this numeric case.

Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
state-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same prima
value.

Table 2 Definition of the OR Operator

OR T F U

T T T T

F T F U

U T U U

Table 3 Definition of the NOT Operator

NOT

T F

F T

U U
 6/25/05 88

Restrictions Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

does
umer-

h

sed on
4.14 Restrictions

Although SQL requires support for fixed decimal comparison in arithmetic expressions, EJB QL
not. For this reason EJB QL restricts exact numeric literals to those without a decimal point (and n
ics with a decimal point as an alternate representation for approximate numeric values).

Boolean comparison is restricted to= and<>.

EJB QL does not support the use of comments.

EJB 2.1 entity objects of different types cannot be compared. EJB QL queries that contain suc
comparisons are invalid.

4.15 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are ba
the example presented in Section 4.3.2.

4.15.1 Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o
FROM Order o
WHERE o.shippingAddress.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

4.15.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l
89 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft Examples

Sun Microsystems, Inc.

ry can

umes
esses,

ping
ty rules

ry key)

nt for
Note that the result of this query does not include orders with no associated line items. This que
also be written as:

SELECT o
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l
WHERE l.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example ass
that the application developer uses two distinct entity types to designate shipping and billing addr
as in Figure 1.

SELECT o
FROM Order o
WHERE
NOT (o.shippingAddress.state = o.billingAddress.state AND

 o.shippingAddress.city = o.billingAddress.city AND
 o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity in two different relationships for both the ship
address and the billing address, the above expression can be simplified based on the equali
defined in Section 4.13. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its prima
is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Developme
the J2EE Platform’:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l
WHERE l.product.type = ‘book’ AND

l.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’
 6/25/05 90

EJB QL BNF Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.

ter:
4.15.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parame

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the state-field name, i.e., a string.

4.16 EJB QL BNF

EJB QL BNF notation summary:

• { ... } grouping

• [...] optional constructs

• boldface keywords

• * zero or more

• | alternates

The following is the BNF for EJB QL. This is a superset of EJB QL as defined in [5].

EJB QL ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=

FROM identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
join ::= join_spec association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable
single_valued_path_expression ::=

state_field_path_expression | single_valued_association_path_expression
state_field_path_expression ::=
91 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft EJB QL BNF

Sun Microsystems, Inc.
{identification_variable | single_valued_association_path_expression}.state_field
single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}* single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single_valued_association_field.}*collection_valued_association_field
state_field ::= {embedded_class_state_field.}*simple_state_field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]state_field = new_value
new_value ::=

simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary

delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]
select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |
aggregate_select_expression |
identification_variable |
OBJECT(identification_variable) |
constructor_expression

constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)

constructor_item ::= single_valued_path_expression | aggregate_select_expression
aggregate_select_expression ::=

{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable | state_field_path_expression |

single_valued_association_path_expression)
where_clause ::= WHERE conditional_expression
groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= state_field_path_expression
having_clause ::= HAVING conditional_expression
orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]
subquery ::= simple_select_clause subquery_from_clause [where_clause]

[groupby_clause] [having_clause]
subquery_from_clause ::=

FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=
identification_variable_declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=

single_valued_path_expression |
aggregate_select_expression |
identification_variable

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
 6/25/05 92

EJB QL BNF Enterprise JavaBeans 3.0, Public Draft Query Language

Sun Microsystems, Inc.
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression

between_expression ::=
arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression
in_expression ::=

state_field_path_expression [NOT] IN (in_item {, in_item}* | subquery)
in_item ::= literal | input_parameter
like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |
entity_expression { = | <> } {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::=

state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
93 6/25/05

Query Language Enterprise JavaBeans 3.0, Public Draft EJB QL BNF

Sun Microsystems, Inc.
functions_returning_numerics |
string_expression ::= string_primary | (subquery)
string_primary ::=

state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |

datetime_expression ::= datetime_primary | (subquery)
datetime_primary ::=

state_field_path_expression |
input_parameter |
functions_returning_datetime |

boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=

state_field_path_expression |
boolean_literal |
input_parameter |

entity_expression ::=
single_valued_association_path_expression |
identification_variable |
input_parameter

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

functions_returning_datetime ::=
CURRENT_DATE|
CURRENT_TIME |
CURRENT_TIMESTAMP

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,

simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH
 6/25/05 94

Entity Managers Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

. The
.

E con-

appli-

in J2EE
ager is
Chapter 5 EntityManager

The lifecycle of an entity manager may be managed by the J2EE container or by the application
application may manage the lifecycle of an entity manager in both J2EE and J2SE environments

5.1 Entity Managers

A container-managed entity manager is an entity manager whose lifecycle is managed by the J2E
tainer.

An application-managed entity manager is an entity manager whose lifecycle is managed by the
cation.

Both container-managed and application-managed entity managers are required to be supported
web containers and EJB containers. Within an EJB environment, a container-managed entity man
typically used.

In J2SE environments, only application-managed entity managers are supported.
95 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Obtaining an EntityManager

Sun Microsystems, Inc.

-man-

which

ion or

anager

c-

ctory.

cy-
5.2 Obtaining an EntityManager

How an entity manager is obtained depends on whether it is container-managed or application
aged.

When multiple persistence archives are present in the application, the application must designate
persistence unit to use.

5.2.1 Obtaining a Container-managed Entity Manager

A container-managed entity manager is obtained by the application through dependency inject
through JNDI lookup, or by callingEntityManagerFactory.getEntityManager() . The
container manages the creation of the entity manager and handles the closing of the entity m
transparently to the application.

Entity managers can be injected using thePersistenceContext annotation. If multiple persistence
units exist, theunitName element must be specified. Thetype element specifies whether a transa
tion-scoped or extended persistence context is to be used.

For example,

@PersistenceContext(unitName="order")
EntityManager em;

//here only one persistence unit exists
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager orderEM;

The JNDI lookup of an entity manager is illustrated below:

@Stateless
@PersistenceContext(name="OrderEM", unitName="Order")
public class MySessionBean implements MyInterface {

@Resource SessionContext ctx;

public void doSomething() {
EntityManager em = (EntityManager)

ctx.lookup("OrderEM");
...

}
}

5.2.2 Obtaining an Application-managed Entity Manager
An application-managed entity manager is obtained by the application from an entity manager fa

TheEntityManagerFactory interface is used to create an entity manager and manage its life
cle.
 6/25/05 96

Obtaining an EntityManager Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

anner
e imple-

ty man-

on. If a

unicat
An entity manager factory provides entity manager instances that are all configured in the same m
(e.g., configured to connect to the same database, use the same initial settings as defined by th
mentation, etc.).

More than one entity manager factory instance may be available simultaneously in the JVM.[23]

5.2.2.1 Obtaining an Entity Manager Factory in a J2EE Container
Within a J2EE environment, an entity manager factory may be injected using thePersistenceUnit
annotation or obtained through JNDI lookup.

For example

@PersistenceUnit
EntityManagerFactory emf;

5.2.2.2 Obtaining an Entity Manager Factory in a J2SE Environment
Outside a J2EE container environment, thejavax.persistence.Persistence class is the
bootstrap class that provides access to an entity manager factory. The application creates an enti
ager factory by calling thecreateEntityManagerFactory method of thejavax.persis-
tence.Persistence class.

No name needs to be specified in the case where only one persistence unit exists in the applicati
name is not passed, but multiple persistence units exist, a PersistenceException is thrown.

For example,

EntityManagerFactory emf =
javax.persistence.Persistence.createEntityManagerFactory("Order");
 EntityManager em = emf.createEntityManager();

[23] This may be the case when using multiple databases, since in a typical configuration a single entity manager only commes
with a single database.
97 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Obtaining an EntityManager

Sun Microsystems, Inc.

tity
ication
5.2.2.3 The EntityManagerFactory Interface
The EntityManagerFactory interface is the interface used by the application to obtain en
managers. When the application has finished using the entity manager factory, and/or at appl
shutdown, the application should close the entity manager factory.

public interface javax.persistence.EntityManagerFactory {

/**
 * Create a new EntityManager of PersistenceContextType.TRANSAC-

TION
 *
 * The isOpen method will return true on the returned instance.
 *
 * This method returns a new EntityManager instance (with a new
 * persistence context) every time it is invoked.
 */
EntityManager createEntityManager();

/**
 * Create a new EntityManager of the specified
 * PersistenceContextType.
 * The isOpen method will return true on the returned instance.
 * This method returns a new EntityManager instance (with a new
 * persistence context) every time it is invoked.
 */
EntityManager createEntityManager(PersistenceContextType type);

/**
 * Get the container-managed EntityManager bound to the
 * current JTA transaction.
 * If there is no persistence context bound to the current
 * JTA transaction, a new persistence context is created and
 * associated with the transaction.
 * If there is an existing persistence context bound to
 * the current JTA transaction, it is returned.
 * If no JTA transaction is in progress, an EntityManager
 * instance is created that will be bound to subsequent
 * JTA transactions.
 * Throws IllegalStateException if called on an

* EntityManagerFactory that does not provide JTA EntityManagers.
 */
EntityManager getEntityManager();

/**
 * Close this factory, releasing any resources that might be
 * held by this factory. After invoking this method, all methods
 * on the EntityManagerFactory instance will throw an
 * IllegalStateException, except for isOpen, which will return
 * false.
 */
void close();

/**
 * Indicates whether or not this factory is open. Returns true
 * until a call to close has been made.
 */
public boolean isOpen();

}

 6/25/05 98

Obtaining an EntityManager Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

g and

apter

a-

ked on
The following example illustrates the creation of an EntityManagerFactory, and its use in creatin
using a resource-local EntityManager.[24]

import javax.persistence.*;

public class PasswordChanger {
public static void main (String[] args) {

EntityManagerFactory emf =
Persistence.createEntityManagerFactory();

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();
user = em.createQuery

 ("SELECT u FROM User u WHERE u.name=:name AND
u.pass=:pass")
 .setParameter("name", args[0])
 .setParameter("pass", args[1])
 .getSingleResult();

if (user!=null)
user.setPassword(args[2]);

em.getTransaction().commit();

em.close();
emf.close ();

 }
}

Configuration information needed for the creation of an EntityManagerFactory is described in Ch
6, “Entity Packaging”.

5.2.2.4 Control of the Application-Managed EntityManager Lifecycle.
The EntityManager methodsclose and isOpen are used to manage the lifecycle of an applic
tion-managed entity manager.

TheEntityManager.close method closes an entity manager to release its resources. Theclose
method must only be invoked when a transaction is not active. The close method must not be invo
a container-managed entity manager or on an entity manager that has been closed.

TheEntityManager.isOpen method indicates whether the entity manager is open. TheisOpen
method will return true unless the entity manager has been closed.

[24] Resource-local entity managers are described in Section 5.3.2.
99 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Controlling Transactions

Sun Microsystems, Inc.

e of a
he

at the

E web
ed. In

er. A
ternal

re only

tion is
l entity

presence

man-
5.3 Controlling Transactions

Transactions involving EntityManager operations may controlled either through JTA or through us
resource-localEntityTransaction API, which is mapped to a resource transaction over t
resource that underlies the entities managed by the entity manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—
time its underlying entity manager factory is configured and created.

Both JTA entity managers and resource-local entity managers are required to be supported in J2E
containers and EJB containers. Within an EJB environment, a JTA entity manager is typically us
J2SE environments, only resource-local entity managers are supported.

5.3.1 JTA EntityManagers

An entity manager whose transactions are controlled through JTA is termed a JTA entity manag
JTA entity manager participates in the current JTA transaction, which is begun and committed ex
to the entity manager and propagated to the underlying resource manager.

Container-managed entity managers can only be JTA entity managers. JTA entity managers a
specified for use in J2EE containers.

5.3.2 Resource-local EntityManagers
An entity manager whose transactions are controlled by the application through theEntityTrans-
action API is termed a resource-local entity manager. A resource-local entity manager transac
mapped to a resource transaction over the resource by the persistence provider. Resource-loca
managers may use server or local resources to connect to the database and are unaware of the
of JTA transactions that may or may not be active.

Application-managed entity managers may be either JTA entity managers or resource-local entity
agers.
 6/25/05 100

Persistence Contexts Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

ntity

sistent
s and

sistence

 below.

y man-
5.3.2.1 The EntityTransaction Interface
TheEntityTransaction interface is used to control resource transactions on resource-local e
managers. TheEntityManager getTransaction method returns theEntityTransaction
interface.

public interface EntityTransaction {
/**
 * Start a resource transaction.
 * Throws IllegalStateException if isActive() is true.
 */
public void begin();

/**
 * Commit the current transaction, writing any unflushed
 * changes to the database.
 * @throws IllegalStateException if isActive() is false.
 * @throws PersistenceException if the commit fails.
 */
public void commit();

/**
 * Roll back the current transaction.
 * @throws IllegalStateException if isActive() is false.
 */
public void rollback();

/**
 * Check to see if a transaction is in progress.
 */
public boolean isActive();

}

5.4 Persistence Contexts

As described in chapter 3, a persistence context is a set of entity instances in which for any per
entity identity there is a unique entity instance. Within the persistence context, the entity instance
their lifecycle are managed by the entity manager.

A persistence context may be either a transaction-scoped persistence context or an extended per
context.

A persistence context is either container-managed or application-managed, as described further

Examples of persistence context use are given in Section 5.5.

5.4.1 Container-managed Persistence Contexts

A container-managed persistence context is always associated with a container-managed entit
ager. The lifecycle of the persistence context is managed automatically by the container.
101 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Persistence Contexts

Sun Microsystems, Inc.

ope of
he JTA
action.
at were

ted and
iately

anager
ainer.
n and is

ate-

in man-
xt ends.

entity
ly with
eans of

t begins
urrent
ociated
saction
entity

royed to
come

transac-
n
ecome
ntext is
se will
5.4.1.1 Container-managed Transaction-scoped Persistence Context
A new persistence context begins when a container-manager entity manager is invoked in the sc
an active JTA transaction, and there is no current persistence context already associated with t
transaction. The persistence context is created and then associated with the current JTA trans
The persistence context ends when the associated JTA transaction completes, and all entities th
managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, a persistence context is crea
destroyed to service the method call only, and any entities loaded from the database will immed
become detached at the end of the method call.

5.4.1.2 Container-managed Extended Persistence Context
An extended persistence context exists from the point at which the container-managed entity m
has been obtained by dependency injection or through JNDI lookup until it is closed by the cont
Such an extended persistence context can only be used within the scope of a stateful session bea
closed by the container when the@Removemethod of the stateful session bean completes (or the st
ful session bean instance is otherwise destroyed).

When an extended persistence context is used, the entities managed by the EntityManager rema
aged after a JTA transaction commits. They do not become detached until the persistence conte

5.4.2 Application-managed Persistence Contexts
An application-managed persistence context is always associated with an application-managed
manager. When the persistence context is application managed, the application interacts direct
the persistence provider's entity manager factory to obtain and destroy persistence contexts by m
the EntityManagerFactory.createEntityManager() and EntityMan-
ager.close() operations , and transaction APIs.

5.4.2.1 Application-managed Transaction-scoped Persistence Context
For a JTA entity manager with transaction-scoped persistence context, a new persistence contex
when the entity manager is invoked in the scope of an active JTA transaction, and there is no c
persistence context already associated with the entity manager. This persistence context is ass
with the entity manager instance. The persistence context ends when the associated JTA tran
completes, and all entities that were managed by the EntityManager become detached. If the
manager is invoked outside the scope of a transaction, a persistence context is created and dest
service the method call only, and any entities loaded from the database will immediately be
detached at the end of the method call.

For a resource-local entity manager, a new persistence context begins whenever a new resource
tion is started viaEntityManagerTransaction.begin() . The persistence context ends whe
the resource transaction ends, and all entities that were managed by the EntityManager b
detached. If the entity manager is invoked outside the scope of a transaction, a persistence co
created and destroyed to service the method call only, and any entities loaded from the databa
immediately become detached at the end of the method call.
 6/25/05 102

Persistence Contexts Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

r a JTA
ich the

in man-
tached

one or

aged
text.

ce con-

f type
I

saction:

text is
data-

urrent
ction,

urrent
5.4.2.2 Application-managed Extended Persistence Context
In the case of an application-managed entity manager with extended persistence context (whethe
or resource-local entity manager), the extended persistence context exists from the point at wh
entity manager has been created until the entity manager is closed, using theEntityManagerFac-
tory.createEntityManager() andEntityManager.close() APIs for the management
of the entity manager lifecycle.

When an extended persistence context is used, the entities managed by the EntityManager rema
aged after the JTA transaction or resource-local transaction commits. They do not become de
until the persistence context ends.

5.4.3 Persistence Context Propagation
For container-managed persistence contexts, a single persistence context may correspond to
more JTA entity manager instances.

Persistence context propagation does not apply to application-managed persistence contexts.

In the case of container-managed persistence contexts of typePersistenceContext-
Type.TRANSACTION, the propagation of a JTA transaction causes the propagation of the man
persistence context across the entity managers that are accessed in the same transactional con[25]

Entity managers in different JTA transactions do not share the same persistence context.

Entity managers obtained from different entity manager factories never share the same persisten
text.

5.4.3.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
The application may obtain a container-managed JTA entity manager with persistence context o
PersistenceContextType.TRANSACTION bound to the JTA transaction by injection or JND
lookup, or by callinggetEntityManager() on a JTA entity manager factory.

In either case, the returned entity manager accesses a persistence context bound to the JTA tran

• If the entity manager is called when no JTA transaction is in progress, a persistence con
created and destroyed to service the method call only, and any entities loaded from the
base will immediately become detached at the end of the method call.

• If the entity manager is called and there is no persistence context associated with the c
JTA transaction, a new persistence context will be created and bound to the JTA transa
and the call will take place in that context.

• If the entity manager is called and there is an existing persistence context bound to the c
JTA transaction, the call takes place in that context.

[25] Note that these entity managers are associated with the same entity manager factory. See Section 5.6.
103 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Persistence Contexts

Sun Microsystems, Inc.

f type
or

ger is

n with
tion is

bean or
ransac-

ful ses-
d.

ful ses-
herited
differ-

an with
tion is

same
5.4.3.2 Persistence Context Propagation Rules for Extended Persistence Contexts

The application may obtain a container-managed JTA entity manager with persistence context o
PersistenceContextType.EXTENDED bound to a stateful session bean instance by injection
JNDI lookup.

The following rules apply when the persistence context type of a container-managed entity mana
EXTENDED:

• If a component with a transaction-scoped persistence context calls a stateful session bea
an extended persistence context in the same JTA transaction, an IllegalStateExcep
thrown.

• If a stateful session bean with an extended persistence context calls a stateless session
a stateful session bean with a transaction-scoped persistence context in the same JTA t
tion, the persistence context is propagated.

• If a stateful session bean with an extended persistence context calls a stateless or state
sion bean in a different JTA transaction context, the persistence context is not propagate

• If a stateful session bean with an extended persistence context instantiates another state
sion bean with an extended persistence context, the extended persistence context is in
by the second stateful session bean. If the second stateful session bean is called with a
ent transaction context than the first, an IllegalStateException is thrown.

• If a stateful session bean with an extended persistence context calls a stateful session be
a different extended persistence context in the same transaction, an IllegalStateExcep
thrown.

In general, an exception is thrown if there are two different extended persistence contexts for the
EntityManagerFactory in the same transaction.
 6/25/05 104

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.
5.5 Examples

5.5.1 Container-managed Transaction-scoped Persistence Context

@Stateless
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceContext EntityManager em;

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

 public LineItem createLineItem(Order order, Product product, int
quantity) {

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);
return li;

}

}

105 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

Sun Microsystems, Inc.
5.5.2 Container-managed Extended Persistence Context

@Stateful
@Transaction(REQUIRES_NEW)
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)
EntityManager em;

private Order order;
private Product prod;

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
return li;

}

}

 6/25/05 106

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.
5.5.3 Application-managed Transaction-scoped Persistence Context (JTA)

@Stateless
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init() {

em = emf.createEntityManager();
}

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(Order order, Product product, int
quantity) {

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);
return li;

}

@PreDestroy
public void destroy() {

em.close();
}

}

107 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

Sun Microsystems, Inc.
5.5.4 Application-managed Extended Persistence Context(JTA)

@Stateful
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;
private Product prod;

@PostConstruct
public void init() {

em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);

}

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
return li;

}

@Remove
public void destroy() {

em.close();
}

}

 6/25/05 108

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.
5.5.5 Application-managed Transaction-scoped Persistence Context (Resource
Transaction)

public class ShoppingCart {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager();

}

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(Order order, Product product, int
quantity) {

em.getTransaction().begin();

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);

em.getTransaction().commit();

return li;
}

public void destroy() {
em.close();
emf.close();

}

}

109 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

Sun Microsystems, Inc.
5.5.6 Application-managed Extended Persistence Context (Resource Transaction)

public class ShoppingCart {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager(PersistenceContext-

Type.EXTENDED);
}

private Order order;
private Product prod;

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
em.getTransaction().begin();

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);

em.getTransaction().commit();

return li;
}

public void destroy() {
em.close();
emf.close();

}

}

 6/25/05 110

Requirements on the Container Enterprise JavaBeans 3.0, Public Draft EntityManager

Sun Microsystems, Inc.

ce pro-

se same
rsis-

her in

where
associ-

call-
e

con-

cle of
on

-

siness
t

that
5.6 Requirements on the Container

5.6.1 Persistence Context Management
For application managed persistence contexts, the application interacts directly with the persisten
vider and uses theEntityManagerFactory and EntityManager APIs to create and destroy
persistence contexts. For container managed persistence contexts, the container might use the
APIs or might use its own internal APIs; however, the container is required to support third-party pe
tence providers. The APIs for the support of third-party persistence providers are described furt
Chapter 7.

Persistence contexts are always associated with an entity manager factory. In the following, every
that "the persistence context" appears, it should be understood to mean "the persistence context
ated with a particular entity manager factory".

Outside the container environment, the application creates an entity manager factory explicitly by
ing Persistence.createEntityManagerFactory() . Inside the container environment, th
container instantiates the entity manager factory and exposes it to the application via JNDI. The
tainer might use internal APIs to create the entity manager factory, or it might usePersisten-
ceProvider.createContainerEntityManagerFactory() . However, the container is
required to support third-party persistence providers, and in this case, the container must use thePer-
sistenceProvider.createContainerEntityManagerFactory() call to create the
entity manager factory and must callEntityManagerFactory.close() to destroy the entity
manager factory prior to shutdown.

5.6.2 Container Managed Persistence Contexts
When operating in a container environment, the container is responsible for managing the lifecy
persistence contexts, and injectingEntityManager references into web components and sessi
bean and message-driven bean components.

The container:

• Begins a new persistence context of typePersistenceContextType.TRANSACTION
whenever invocation of a business method of a component using an entity manager withPer-
sistenceContextType.TRANSACTION , results in the beginning of a new JTA transac
tion

• Associates that persistence context with the JTA transaction, so that subsequent local bu
methods which occur in the same JTA transaction also propagate the persistence contex

• Ends the persistence context when the JTA transaction completes

The container also:

• Begins a new persistence context of typePersistenceContextType.EXTENDED when-
ever a stateful session bean using an entity manager withPersistenceContext-
Type.TRANSACTION is created outside the scope of a JTA transaction and associates
persistence context with the stateful session bean instance
111 6/25/05

EntityManager Enterprise JavaBeans 3.0, Public Draft Requirements on the Container

Sun Microsystems, Inc.

siness

also

w

-
nt. The

ociated
n which
could

a

tateEx-

nde-
r entity
between
ciation
• Associates the persistence context with the current JTA transaction whenever a bu
method of the stateful bean is invoked, so that

• subsequent local business methods which occur in the same JTA transaction
propagate the persistence context

• instantiations of stateful session beans with entity managers withPersistence-
ContextType.EXTENDED associate the persistence context with the ne
instance of the stateful bean

• Ends the persistence context when the bean is removed

The container is responsible for associating anyEntityManager references injected into compo
nents with the managed persistence context before invoking a business method of the compone
container must also make the managed persistence context available via JNDI lookup .

The rules above can result in "persistence context duplication", where a persistence context ass
with the JTA transaction is not the same as the persistence context associated with a stateful bea
is being invoked in the context of that transaction. (See Section 5.4.3 above). For example, this
happen if a business method annotatedTransaction(REQUIRED) of a stateful session bean using
persistence context of typePersistenceContextType.EXTENDED was called from a stateless
session bean. The container must detect persistence context duplication and throw the IllegalS
ception.

When operating with a third-party persistence provider, the container uses theEntityManagerFac-
tory/EntityManager contract defined above to create and destroy persistence contexts. It is u
fined whether a new entity manager instance is created for every persistence context, or whethe
manager instances are sometimes reused. Exactly how the container maintains the association
persistence context and JTA transaction is not defined. The container may maintain this asso
internally, or it may delegate this concern to the persistence provider by usinggetEntityMan-
ager() to obtain the provider's current entity manager.
 6/25/05 112

Persistence Unit Enterprise JavaBeans 3.0, Public Draft Entity Packaging

Sun Microsystems, Inc.

ter are
es may

ager

map-
Chapter 6 Entity Packaging

This chapter describes the packaging of persistence units.

The persistence archive file is used to package a persistence unit in J2EE.

In J2SE environments, the metadata mapping files, jar files, and classes described in this chap
used. The persistence archive file may be used, or the metadata mapping files, jar files, and class
be packaged in accordance with requirements imposed by the persistence provider.

6.1 Persistence Unit

A persistence unit is a logical grouping that includes:

• A named entity manager together with its provider and configuration information

• The set of managed classes included in the persistence unit for the specified entity man

• Mapping metadata (in the form of metadata annotations and/or XML) that specifies the
ping of the classes to the database
113 6/25/05

Entity Packaging Enterprise JavaBeans 3.0, Public Draft Persistence Archive

Sun Microsystems, Inc.

r

tence
tion—
differ-
e same

aged
stence

ed in
XML

ive, or a

refer-
ence
bination
6.2 Persistence Archive

Within J2EE, the persistence archive, or.par file, is the packaging artifact or deployment vehicle fo
persistence units. Each persistence archive houses a single persistence unit.

Persistence archives may be referenced by J2EE application metadata. If specified in theapplica-
tion.xml , persistence archives are listed as follows:

<application>
 <module>
 <persistence>orderEntities.par</persistence>
 </module>
</application>

Any number of persistence archives may be deployed within a J2EE application (EAR). All persis
archives used by the application must be accessible to all other J2EE components in the applica
i.e. loaded by the application classloader—such that if the same entity class is referenced by two
ent J2EE components (which may be using different persistence units), the referenced class is th
identical class.

6.2.1 persistence.xml file
The configuration information for the entity manager and its entity manager factory, the man
classes included in the persistence unit, and the object/relational mapping information for a persi
unit are defined in apersistence.xml file located in theMETA-INF directory of the persistence
archive. This information may be defined by containment or by reference, as described below.

The object/relational mapping information may take the form of annotations on the classes includ
the persistence archive, one or more XML files contained in the persistence archive, one or more
files outside the persistence archive on the classpath and referenced from the persistence arch
combination of these.

The classes may either be contained within the persistence archive; or they may be specified by
ence—i.e., by naming the classes, class archives, or mapping XML files (which in turn refer
classes) that are accessible on the application classpath; or they may be specified by some com
of these means.

The entity-manager element consists of the following sub-elements:name, provider ,
jta-data-source , non-jta-data-source , mapping-file , jar-file , class , prop-
erties .

The semantics of the elements are as described below.
 6/25/05 114

Persistence Archive Enterprise JavaBeans 3.0, Public Draft Entity Packaging

Sun Microsystems, Inc.

e of its

al
sources
ct spe-

follow-
For example:

<entity-manager>
<name>em1</name>
<provider>com.acme.persistence</provider>
<jta-data-source>jdbc/MyDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
<properties>

 <property name="sql-logging" value="on"/>
 </properties>
</entity-manager>

6.2.1.1 name
Every entity manager must have a name. If no name is specified for an entity manager, the nam
containing persistence archive is used (without the.par extension).

For example, if thepersistence.xml file is contained inorderEntities.par and no name is
specified for the entity manager, the entity manager's name will beorderEntities .

6.2.1.2 provider
The provider element specifies the name of the persistence provider'sjavax.persis-
tence.spi.PersistenceProvider class. Theprovider element must be specified if a
third-party persistence provider implementation is used.

6.2.1.3 jta-data-source, non-jta-data-source
The jta-data-source and non-jta-data-source elements are used to specify the glob
JNDI name of the JTA and/or non-JTA data sources respectively. These elements name the data
in the local environment; the format of these names and the ability to specify the names are produ
cific (e.g., they might be provided by other means).

6.2.1.4 mapping-file, jar-file, class
The set of classes that are managed by a persistence unit is defined by using one or more of the
ing:[26]

• One or more object/relational mapping XML files

• One or more jar files that will be searched for classes

• An explicit list of the classes

• The classes contained in the persistence archive

[26] Note that an individual class may be used in more than one persistence unit.
115 6/25/05

Entity Packaging Enterprise JavaBeans 3.0, Public Draft Persistence Archive

Sun Microsystems, Inc.

An

pec-
an

om
ence
nfor-
t the

these
tations
efined

e JAR
sed, or

classes
using

ith the
by the
ass.
ing

persis-

ence

e

An object/relational mapping XML file contains the mapping information for the classes listed in it.
entity-mappings.xml file may be specified in theMETA-INF directory in the persistence archive
or one or more mapping files may be referenced by themapping-file elements of the
entity-manager element. If a mapping file is specified, the classes and mapping information s
ified in the mapping file will be used. If multiple mapping files are specified (possibly including
entity-mappings.xml file), the resulting mappings are obtained by combining the mappings fr
all of the files. The result is undefined if multiple mapping files referenced within a single persist
unit contain overlapping mapping information for any given class. The object/relational mapping i
mation contained in any mapping file referenced within the persistence unit must be disjoint a
class-level from object/relational mapping information contained in any other such mapping file.

One or more JAR files may be specified instead of, or in addition to the mapping files. If specified,
JAR files will be searched for entity and embedded classes, and any mapping metadata anno
found on them will be processed, or they will be mapped using the mapping annotation defaults d
by this specification.

A list of named entity and embedded classes may also be specified instead of, or in addition to, th
files and mapping files. Any mapping metadata annotations found on these classes will be proces
they will be mapped using the mapping annotation defaults.

All classes contained in the persistence archive itself are also searched for entity and embedded
and any mapping metadata annotations found on them will be processed, or they will be mapped
the mapping annotation defaults.

The resulting set of entities managed by the persistence unit is the union of these four sources, w
mapping metadata annotations (or annotation defaults) for any given class being overridden
XML mapping information file if there are both annotations as well as XML mappings for that cl
The level of overriding is at the level of the class: if a class is mapped using XML, all of its mapp
information must be specified using XML or none of it must be.

All classes must be on the application classpath to ensure that entity managers from different
tence units that map the same class will be accessing the same identical class.

6.2.1.5 properties
The properties element is used to specify vendor-specific properties that apply to the persist
unit and its entity manager factory configuration.

Entries that make use of the namespacejavax.persistence and its subnamespaces must not b
used for vendor-specific information. All names containingjavax.persistence are reserved for
future use by this specification.

6.2.1.6 Examples
The following are sample contents of apersistence.xml file. Assume that this file is located in the
META-INF directory of anorderEntities.par persistence archive.
 6/25/05 116

Persistence Archive Enterprise JavaBeans 3.0, Public Draft Entity Packaging

Sun Microsystems, Inc.

or-
ound in

otated
f
g

The
and
d in the

d. The
nu-
d in the
Example 1:

<entity-manager>
</entity-manager>

A persistence unit is created for entity managers namedorderEntities .

If a META-INF/entity-mapping.xml file exists, any classes referenced by it and mapping inf
mation contained in it are used as specified above. Any annotated entity and embedded classes f
theorderEntities.par archive are also added to the list of managed classes.

Example 2:

<entity-manager>
<name>EM-2<name>
<mapping-file>mappings.xml</mapping-file>

</entity-manager>

A persistence unit is created for entity managers namedEM-2. Themappings.xml resource exists
on the classpath and any classes and mapping information contained in it are used. Any ann
entity and embedded classes found in theorderEntities.par archive are also added to the list o
managed classes. If aMETA-INF/entity-mappings.xml file exists, any classes and mappin
information contained in it are used as well.

Example 3:

<entity-manager>
<name>EM-3</name>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>

</entity-manager>

A persistence unit is created for entity managers namedEM-3. If a META-INF/entity-map-
pings.xml file exists then any classes and mapping information contained in it are used.
order.jar andorder-supplemental.jar are searched for entity and embedded classes
any annotated classes found are added. Any annotated entity and embedded classes foun
orderEntities.par archive are also added to the list of managed classes.

Example 4:

<entity-manager>
<name>EM-4</name>
<mapping-file>order-mappings.xml</mapping-file>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.Item</class>

</entity-manager>

A persistence unit is created for entity managers namedEM-4. Theorder-mappings.xml is read
as a resource and any classes referenced by it and mapping information contained in it are use
annotatedOrder , Customer andItem classes are loaded and are added. (Note that explicitly e
merated classes must also be annotated). Any annotated entity and embedded classes foun
orderEntities.par archive are also added to the list of managed classes.
117 6/25/05

Entity Packaging Enterprise JavaBeans 3.0, Public Draft Deployment

Sun Microsystems, Inc.

ained in

any
found in

g an

entity
Example 5:

<entity-manager>
<name>EM-5</name>
<mapping-file>order1.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.par</jar-file>
<jar-file>order-supplemental.jar</jar-file>

</entity-manager>

A persistence unit is created for entity managers namedEM-5. Theorder1.xml andorder2.xml
files are read as resources and any classes referenced by them and mapping information cont
them are used. Theorder.par is another persistence archive on the classpath, whileorder-sup-
plemental.jar is just a library of classes. Both of these are searched for entity classes and
annotated classes found are added to the list of managed classes. Any annotated entity classes
theorderEntities.par archive are also added.

6.2.2 Default EntityManager
Any persistence archive that exists in the application but does not contain apersistence.xml file
will have a persistence unit configured using the default values. This is equivalent to specifyin
emptyentity-manager element in apersistence.xml file in the archive. This means that it
will use the default name (persistence archive name minus the extension); theentity-map-
pings.xml mapping file, if any, that is contained in the persistence archive; and the annotated
and embedded classes contained in the persistence archive.

6.3 Deployment

The persistence archive is either specified inapplication.xml or discovered through J2EE EAR
processing. When the container finds a.par file it looks for META-INF/persistence.xml file
and processes the persistence unit definition that it contains. If noMETA-INF/persistence.xml
is found, a default persistence unit configuration is created as specified above.
 6/25/05 118

J2EE Container Deployment Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

Sun Microsystems, Inc.

oyment

essing
Chapter 7 Container and Provider Contracts for
Deployment and Bootstrapping

This chapter defines requirements on the J2EE container and on the persistence provider for depl
and bootstrapping.

7.1 J2EE Container Deployment

Persistence archives are deployed into the container in the form of persistence archive files, or.par
files. Each persistence archive file may contain zero or onepersistence.xml file, any number of
mapping files and any number of class files.

7.1.1 Responsibilities of the Container
At deployment time the container is responsible for discovering the persistence archives and proc
any persistence.xml files in them. The container must also apply any defaults including:

• EntityManager name

• entity-mapping.xml mapping file
119 6/25/05

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft J2EE Container Deploy-

Sun Microsystems, Inc.

as the

n-
the

ed
onfig-
agers.
. Any

ti-
ctory
• set of managed classes

The defaults for these are described in Chapter 6.

The container may optionally add its own container-defaulted rules and values for such properties
persistence provider, the data source, or any container-specific properties.

Once the container has read the persistence metadata, it determines the provider’sjavax.persis-
tence.spi.PersistenceProvider implementation class for each deployed named EntityMa
ager. It creates an instance of this implementation class and invokes
createContainerEntityManagerFactory method on this instance. The metadata is pass
into the persistence provider as part of this call. This occurs once for each named EntityManager c
uration.The factory obtained will be used by the container to create container-managed EntityMan
Only one EntityManagerFactory may be created for each named EntityManager configuration
number of EntityManager instances may be created from a given factory.

When a persistence archive is redeployed then the container must call thecreateContainerEnti-
tyManagerFactory method again, with the required metadata, to indicate the deployment.

7.1.2 Responsibilities of the Persistence Provider
The persistence provider must implement thePersistenceProvider SPI and be able to process
the metadata that is passed to it at the timecreateContainerEntityManagerFactory method
is called. An instance ofEntityManagerFactory is created and the metadata for the named En
tyManager is associated with the factory. The factory is then returned to the container. The fa
instance must implementjavax.naming.Referenceable .
 6/25/05 120

J2EE Container Deployment Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

Sun Microsystems, Inc.
7.1.3 javax.persistence.spi.PersistenceProvider
The interfacejavax.persistence.spi.PersistenceProvider is implemented by the per-
sistence provider, and is specified in thepersistence.xml file in the persistence archive. It is
invoked by the container when it needs to create an EntityManagerFactory, or by thejavax.per-
sistence.Persistence class when running outside the container.

package javax.persistence.spi;

/**
 * Interface implemented by a persistence provider.
 * The implementation of this interface that is to
 * be used for a given EntityManager is specified in
 * persistence.xml file in the persistence archive.
 * This interface is invoked by the Container when it
 * needs to create an EntityManagerFactory, or by the
 * Persistence class when running outside the Container.
 */
public interface PersistenceProvider {

/**
 * Called by Persistence class when an EntityManagerFactory
 * is to be created.
 *
 * @param emName The name of the EntityManager configuration
 * for the factory
 * @param map A Map of properties that may be used by the
 * persistence provider
 * @return EntityManagerFactory for the named EntityManager,
 * or null if the provider is not the right provider
 */
public EntityManagerFactory createEntityManagerFactory(String

emName, Map map);

/**
 * Called by the container when an EntityManagerFactory
 * is to be created.
 *
 * @param info Metadata needed by the provider
 * @return EntityManagerFactory for the named EntityManager
 */
 public EntityManagerFactory createContainerEntityManagerFac-

tory(PersistenceInfo info);
}

121 6/25/05

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft J2EE Container Deploy-

Sun Microsystems, Inc.
7.1.4 javax.persistence.spi.PersistenceInfo Interface
package javax.persistence.spi;

import javax.sql.DataSource;

/**
 * Interface implemented and used by the Container to pass
 * persistence metadata to the persistence provider as part of

* the createContainerEntityManagerFactory() call. The provider
 * will use this metadata to obtain the mappings and initialize
 * its structures.
 */
public interface PersistenceInfo {

/**
 * @return The name of the EntityManager that is being created.
 * Corresponds to the <name> element in persistence.xml
 */
public String getEntityManagerName();

/**
 * @returns The name of the persistence provider implementation
 * class.
 * Corresponds to the <provider> element in persistence.xml
 */
public String getPersistenceProviderClassName();

/**
 * @return the JTA-enabled data source to be used by the
 * persistence provider.
 * The data source corresponds to the named <jta-data-source>
 * element in persistence.xml
 */
public DataSource getJtaDataSource();

/**
 * @return The non-JTA-enabled data source to be used by the
 * persistence provider when outside the container, or inside
 * the container when accessing data outside the global
 * transaction.

* The data source corresponds to the named <non-jta-data-source>
 * element in persistence.xml
 */
public DataSource getNonJtaDataSource();

/**
 * @return The list of mapping file names that the persistence
 * provider must load to determine the mappings for the entity
 * classes. The mapping files must be in the standard XML
 * mapping format, be uniquely named and be resource-loadable
 * from the application classpath. This list will not include
 * the entity-mappings.xml file if one was specified.
 * Each mapping file name corresponds to a <mapping-file>
 * element in persistence.xml
 */
public List<String> getMappingFileNames();

/**
 * @return The list of JAR file URLs that the persistence
 6/25/05 122

Bootstrapping in J2SE Environments Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

Sun Microsystems, Inc.

r the
 * provider must look in to find the entity classes that must
 * be managed by EntityManagers of this name. The persistence
 * archive jar itself will always be the last entry in the
 * list. Each jar file URL corresponds to a named <jar-file>
 * element in persistence.xml
 */
public List<URL> getJarFiles();

/**
 * @return The list of class names that the persistence
 * provider must inspect to see if it should add it to its
 * set of managed entity classes that must be managed by
 * EntityManagers of this name.
 * Each class name corresponds to a named <class> element
 * in persistence.xml
 */
public List<String> getEntityClassNames();

/**
 * @return Properties object that may contain vendor-specific
 * properties contained in the persistence.xml file.
 * Each property corresponds to a <property> element in
 *persistence.xml
 */
public Properties getProperties();

/**
 * @return ClassLoader that the provider may use to load any
 * classes, resources, or open URLs.
 */
public ClassLoader getClassLoader();

/**
 * @return URL object that points to the persistence.xml
 * file; useful for providers that may need to re-read the
 * persistence.xml file. If no persistence.xml
 * file is present in the persistence archive, null is
 * returned.
 */
public URL getPersistenceXmlFileUrl();

/**
 * @return URL object that points to the entity-mappings.xml
 * file.
 * If no entity-mappings.xml file was present in the persistence
 * archive,null is returned.
 */
public URL getEntityMappingsXmlFileUrl();

}

7.2 Bootstrapping in J2SE Environments

In J2SE environments (outside the J2EE container), thePersistence.createEntityManager-
Factory call is used by the application to create an entity manager factory. To find the provider fo
named EntityManager configuration thenPersistence class does the following:
123 6/25/05

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft Bootstrapping in J2SE

Sun Microsystems, Inc.

.

persis-

ay also
in each
• Looks up all of the persistence provider services that exist on the context classpath.

• Instantiates each of the provider classes and invokescreateEntityManagerFactory on
the providers until one of the calls returns an EntityManagerFactory instance.

• Returns the factory or an error if none was able to be obtained from the known providers

Persistence providers may require that all persistence archives contain persistence.xml files. The
tence provider is responsible for discovering all of thepersistence.xml files in the.par files and
processes them in order to discover the providers for all of the archives. Persistence providers m
require that the set of entity classes and classes that are to be managed must be fully enumerated
of the persistence.xml files.
 6/25/05 124

Entity Enterprise JavaBeans 3.0, Public Draft Metadata Annotations

Sun Microsystems, Inc.

ions.

ntity

sed to
Chapter 8 Metadata Annotations

This chapter and chapter 9 define the metadata annotations introduced by this specification.

The XML schema defined in chapter 10 provides an alternative to the use of metadata annotatat

These annotations are in the packagejavax.persistence .

8.1 Entity

The Entity annotation specifies that the class is an entity. This annotation is applied to the e
class.

Thename annotation element defaults to the unqualified name of the entity class. This name is u
refer to the entity in queries. The name must not be a reserved literal in EJB QL.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
 String name() default "";
 AccessType access() default PROPERTY;
}

125 6/25/05

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft Callback Annotations

Sun Microsystems, Inc.

es or
s
les.

vents.
r class.
The enumAccessType is used to specify whether the persistence provider runtime uses properti
fields to access the entity state. TheAccessType for an entity class determines whether it
object/relational mapping annotations are applied to its property methods or to its instance variab

public enum AccessType {
 PROPERTY,
 FIELD
}

8.2 Callback Annotations

The EntityListener annotation specifies the callback listener class to be used for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListener {
 Class value();
}

The following annotations are used to specify callback methods for the corresponding lifefcycle e
These annotations may be applied to methods on the entity class or methods of the EntityListene

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}
 6/25/05 126

Annotations for Queries Enterprise JavaBeans 3.0, Public Draft Metadata Annotations

Sun Microsystems, Inc.

ld be

tent or

time

be
ather
ns.
8.3 Annotations for Queries

8.3.1 Flush Mode Annotation

[Note to readers] The semantics and applicability points of theFlushMode annotation are still currently
undergoing review.

The FlushMode annotation is used on a client component to designate whether entities shou
flushed to the database as part of a query or a method’s behavior. For example, theFlushMode anno-
tation can be used to control whether or not queries return entities that have been made persis
removed in the current transaction.

@Target({TYPE}) @Retention(RUNTIME)
public @interface FlushMode {
 FlushModeType value();
}

public enum FlushModeType {
 COMMIT,
 AUTO,
 NEVER
}

FlushMode(AUTO) will cause flushes to occur at commit and before query execution.Flush-
Mode(COMMIT) will cause flush to occur only at transaction commit; the persistence provider run
is permitted to flush before query execution.

FlushMode(NEVER) will cause changes not to be written to the database unless theflush()
method is called.

8.3.2 NamedQuery Annotation

TheNamedQuery annotation is used to specify a named EJB QL query. Thename element is used to
refer to the query when using the EntityManager methods that create query objects.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {
 String name();
 String queryString();
}
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQueries {
 NamedQuery [] value ();
}

[Note to readers] Means for handling application-level metadata is still under discussion. We would like to
able to use annotations for named queries that are logically scoped to a persistence unit r
than to a specific class or method. This applies also to the NamedNativeQuery annotatio
127 6/25/05

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft Annotations for Queries

Sun Microsystems, Inc.

ele-
ts. The

QL

ds of
nd

in

rop-
8.3.3 NamedNativeQuery Annotation

The NamedNativeQuery annotation is used to specify a native SQL named query. The name
ment is used to refer to the query when using the EntityManager methods that create query objec
resultClass element refers to the class of the result; the value of theresultSetMapping ele-
ment is the name of aSQLResultSetMapping , as defined in metadata.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
 String name();
 String queryString();
 Class resultClass() default void.class;

String() resultSetMapping() default ""; // name of SQLResultSetMap-
ping
}

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQueries {
 NamedNativeQuery [] value ();
}

8.3.4 Annotations for SQL Query Result Set Mappings
TheSqlResultSetMapping annotation is used to specify the mapping of the result of a native S
query.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface SqlResultSetMapping {

String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

}

Thename element is the name given to the result set mapping, and used to refer to it in the metho
the Query API. Theentities andcolumns elements are used to specify the mapping to entities a
to scalar values respectively.

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {

Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

}

TheentityClass element specifies the class of the result.

ThediscriminatorColumn element is used to specify the column name (or alias) of the column
the SELECT list that is used to determine the type of the entity instance.

Thefields element is used to map the columns specified in the SELECT list of the query to the p
erties or fields of the entity class.
 6/25/05 128

References to EntityManager and EntityManagerFactoryEnterprise JavaBeans 3.0, Public Draft Metadata Annotations

Sun Microsystems, Inc.

ctories.

ge.

rsis-

to be
sed.

more

e used.
@Target({}) @Retention(RUNTIME)
public @interface FieldResult {

String name();
String column();

}

Thename element is the name of the persistent field or property of the class.

Thecolumn element is the column name (or alias) as specified in the SELECT list.

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {

String name();
}

8.4 References to EntityManager and EntityManagerFactory

These annotations are used to express dependencies on entity managers and entity manager fa

[Note to readers] The names of these annotations are currently undergoing review, and are subject to chan

8.4.1 PersistenceContext Annotation

ThePersistenceContext annotation is used to express a dependency on an EntityManager pe
tence context.

The name element refers to the name by which the EntityManager and its persistence unit are
known in the environment referencing context, and is not needed when dependency injection is u

TheunitName element refers to the name of the persistence unit. It must be specified if there is
than one persistence unit.

Thetype element specifies whether a transaction-scoped or extended persistence context is to b

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext{
 String name() default "";
 String unitName() default "";
 PersistenceContextType type default TRANSACTION;
}
public enum PersistenceContextType {
 TRANSACTION,
 EXTENDED
}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceContexts{
 PersistenceContexts[] value();
}

129 6/25/05

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft References to EntityManager and EntityMan-

Sun Microsystems, Inc.

ry.

nvi-

more
8.4.2 PersistenceUnit Annotation

ThePersistenceUnit annotation is used to express a dependency on an EntityManagerFacto

Thename element refers to the name by which the EntityManagerFactory is to be known in the e
ronment referencing context, and is not needed when dependency injection is used.

TheunitName element refers to the name of the persistence unit. It must be specified if there is
than one persistence unit.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit{
 String name() default "";
 String unitName() default "";
}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits{
 PersistenceUnit[] value();
}

 6/25/05 130

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

omain

t of the
abase.
s to the
lational

on the

ecifi-
ion for
Chapter 9 Metadata for Object/Relational Mapping

The object/relational mapping metadata expressed by an application is part of the application d
model contract.

The object/relational mapping metadata expresses requirements and expectations on the par
application as to the mapping of the entities and relationships of the application domain to a dat
Queries (and, in particular, SQL queries) written against the database schema that correspond
application domain model are dependent upon the mappings expressed by means of the object/re
mapping metadata.

The implementation of this specification must assume the application logic to be dependent up
object/relational mapping expressed in metadata.

It is permitted, but not required, that DDL generation be supported by an implementation of this sp
cation. The annotation elements that specify such DDL are intended as hints to the implementat
DDL generation. Use of such hints is not portable.

9.1 Annotations for Object/Relational Mapping

These annotations are in the packagejavax.persistence .
131 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

e unit
e set-

be

ent

a

[Note to readers] We are currently examining how we might use metadata annotations at the persistenc
level to allow defaults to be set for an entire persistence unit. These defaults would includ
tings for access type, cascade mode, and flush mode.

9.1.1 Table Annotation

The Tableannotation specifies the primary table for the annotated entity. Additional tables may
specified usingSecondaryTable or SecondaryTables annotation. If noTable annotation is
specified for an entity class, all of the default values defined by theTable annotation will apply.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {

String name() default "";
String catalog() default "";
String schema() default "";
UniqueConstraint[] uniqueConstraints() default {};
boolean specified() default true; // For internal use only [27]

}

Table 4 lists the annotation elements that may be specified for aTable annotation.

Table 4 Table Annotation Elements

Example:

@Entity
@Table(name="CUST", schema="RECORDS")
public class Customer { ... }

[27] Note to the reader: use of this element, where specified=FALSE, allows this annotation to be treated as an optional elemof a
containing annotation. See, e.g., JoinTable.

Type Name Description Default

String name (Optional) The name of the table. Unqualified
class name of
the entity

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schem
for user

UniqueConstraint[] uniqueConstraints (Optional) Unique constraints that should be
placed on the table. These are only used if table
generation is in effect. These constraints apply
in addition to any constraints specified by the
Column and JoinColumn annotations, or
entailed by primary key mappings.

No constraints
 6/25/05 132

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

ying

are
umed
renced
9.1.2 SecondaryTable Annotation

TheSecondaryTable annotation is used to specify a secondary table for an entity class. Specif
one or more secondary tables indicates that the entity data is stored across multiple tables.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {

String name();
String catalog() default "";
String schema() default "";
PrimaryKeyJoinColumn[] pkJoin() default {};
UniqueConstraint[] uniqueConstraints() default {};

}

Table 5 lists the annotation elements that may be specified for aSecondaryTable annotation.

Table 5 SecondaryTable Annotation Elements

If no SecondaryTable annotation is specified, it is assumed that all properties of the entity
mapped to the primary table. If no primary key join column is specified, the join columns are ass
to reference the primary key columns of the primary table, and have the same names as the refe
columns.

Example: Single secondary table with a single primary key column

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
 pkJoin=@PrimaryKeyJoinColumn(name="CUST_ID"))
public class Customer { ... }

Type Name Description Default

String name (Required) The name of the table.

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

PrimaryKeyJoin-
Column[]

pkJoin (Optional) The columns that should
be used to join with the primary
table.

Column(s) of the same
name as the primary key
column(s) in the primary
table

UniqueConstraint[] uniqueConstraints (Optional) Unique constraints that
should be placed on the table. These
are typically only used if table gen-
eration is in effect. These constraints
apply in addition to any constraints
specified by the Column and Join-
Column annotations, or entailed by
primary key mappings.

No constraints
133 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

bles

d in
Example: Single secondary table with multiple primary key columns

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
 pkJoin=@PrimaryKeyJoinColumns({
 @PrimaryKeyJoinColumn(name="CUST_ID"),
 @PrimaryKeyJoinColumn(name="CUST_TYPE")}))
public class Customer { ... }

9.1.3 SecondaryTables Annotation
An entity may have multiple secondary tables. In this case they must be enclosed within aSecond-
aryTables annotation. ASecondaryTables annotation takes an array ofSecondaryTable
annotations as its single annotation element.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTables {

SecondaryTable[] value();
}

Example: Multiple secondary tables assuming primary key columns are named the same in all ta

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({

@SecondaryTable(name="EMP_DETAIL"),
@SecondaryTable(name="EMP_HIST")

})
public class Employee { ... }

Example: Multiple secondary tables with differently named primary key columns

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({

@SecondaryTable(name="EMP_DETAIL",
pkJoin=@PrimaryKeyJoinColumn(name="EMPL_ID")),

@SecondaryTable(name="EMP_HIST",
pkJoin=@PrimaryKeyJoinColumn(name="EMPLOYEE_ID"))

})
public class Employee { ... }

9.1.4 UniqueConstraint Annotation

TheUniqueConstraint annotation is used to specify that a unique constraint should be include
the generated DDL for a primary or secondary table.

@Target({TYPE}) @Retention(RUNTIME)
public @interface UniqueConstraint {

String[] columnNames();
}

 6/25/05 134

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

If a
name

e

Table 6 lists the annotation elements that may be specified for aUniqueConstraint annotation.

Table 6 UniqueConstraint Annotation Elements

Example:

@Entity
@Table(

name="EMPLOYEE",
uniqueConstraints=

{@UniqueConstraint(columnNames={"EMP_ID", "EMP_NAME"})}
)
public class Employee { ... }

9.1.5 Column Annotation

The Column annotation is used to specify a mapped column for a persistent property or field.
Column annotation is not specified, or if the name annotation element is missing, the column
defaults to the persistent property or field name.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String secondaryTable() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale

}

Table 7 lists the annotation elements that may be specified for aColumn annotation.

Table 7 Column Annotation Elements

Type Name Description Default

String[] columnNames (Required) An array of the column names that make up the
constraint.

Type Name Description Default

String name (Optional) The name of the column. The property or field nam
135 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

The
n ele-
as

ri-
Examples:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

@Column(name="DESC",
columnDefinition="CLOB NOT NULL",
secondaryTable="EMP_DETAIL")

public String getDescription() { return description; }

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() { return cost; }

9.1.6 JoinColumn Annotation

TheJoinColumn annotation is used to specify a mapped column for joining an entity association.
name annotation element defines the name of the foreign key column. The remaining annotatio
ments (other thanreferencedColumnName) refer to this column and have the same semantics
for theColumn annotation.

If the referencedColumnName element is missing, the foreign key is assumed to refer to the p
mary key of the referenced table.

boolean unique (Optional) Whether the property is a unique key.
This is a shortcut for the UniqueConstraint anno-
tation at the table level and is useful for when the
unique key constraint is only a single field. This
constraints applies in addition to any constraint
entailed by primary key mapping.

false

boolean nullable (Optional) Whether the database column is nul-
lable.

true

boolean insertable (Optional) Whether the column should be
included in SQL INSERT statements generated
by the persistence provider.

true

boolean updatable (Optional) Whether the column should be
included in SQL UPDATE statements generated
by the persistence provider.

true

String columnDefinition (Optional) The SQL fragment that is used when
generating the DDL for the column.

Generated SQL to create a
column of the inferred
type.

String secondaryTable (Optional) The name of the secondary table that
contains the column. If absent the column is
assumed to be in the primary table.

Column is in primary table.

int length (Optional) The column length. 255

int precision (Optional) The precision for a decimal column. 0

int scale (Optional) The scale for a decimal column. 0

Type Name Description Default
 6/25/05 136

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

.

join

tena-
nc-

to

l-
h

n this
If the name annotation element is missing, or if noJoinColumn annotation is specified, the join col-
umns are assumed to have the same names as the primary key columns of the referenced table

If no JoinColumn annotation is specified, a single join column is assumed. The defaults for the
column are as described below.

If there is a single join column, then

• If the name annotation member is missing, the join column name is formed as the conca
tion of the following: the name of the referencing relationship property or field of the refere
ing entity; "_"; the name of the referenced primary key column.

• If the referencedColumnName element is missing, the foreign key is assumed to refer
the primary key of the referenced table.

If there is more than one join column, aJoinColumn annotation must be specified for each join co
umn. Both thename and thereferencedColumnName elements must be specified in each suc
JoinColumn annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default "";
String referencedColumnName() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String secondaryTable() default "";

}

Support for referenced columns that are not the primary key of the referenced table is optional i
release, but will be required in the next.

Table 8 lists the annotation elements that may be specified for aJoinColumn annotation.

Table 8 JoinColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of the foreign key column.
The table in which it is found depends upon the
context. If the join is for a OneToOne or Many-
ToOne mapping or for a secondary table joined
to a primary table, then the foreign key column
is in the table of the source entity. If the join is
for a ManyToMany then the foreign key is in a
join table.

(Only applies if sin-
gle join column is
being used.) The
concatenation of the
following: the name
of the referencing
relationship prop-
erty or field of the
referencing entity;
"_"; the name of the
referenced primary
key column.
137 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

f

Examples:

@ManyToOne
@JoinColumn(name="ADDR_ID")
public Address getAddress() { return address; }

9.1.7 JoinColumns Annotation

Composite keys are supported via theJoinColumns annotation. This allows grouping a number o
JoinColumn specifications for the same relationship or table association.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumns {
 JoinColumn[] value();
}

String referencedColumnName (Optional) The name of the column referenced
by this foreign key column. When used with
mappings, the referenced column is in the table
of the target entity. When used inside a JoinTable
annotation, the referenced key column is in the
entity table of the owning entity, or inverse entity
if the join is part of the inverse join definition.

(Only applies if sin-
gle join column is
being used.) The
same name as the
primary key column
of the referenced
table.

boolean unique (Optional) Whether the property is a unique key.
This is a shortcut for the UniqueConstraint anno-
tation at the table level and is useful for when the
unique key constraint is only a single field. It is
not necessary to explicitly specify this for a join
column that corresponds to a primary key that is
part of a foreign key.

false

boolean nullable (Optional) Whether the foreign key column is
nullable.

true

boolean insertable (Optional) Whether the column should be
included in SQL INSERT statements generated
by the persistence provider.

true

boolean updatable (Optional) Whether the column should be
included in SQL UPDATE statements generated
by the persistence provider.

true

String columnDefinition (Optional) The SQL fragment that is used when
generating the DDL for the column.

Generated SQL to
create a column of
the inferred type.

String secondaryTable (Optional) The name of the secondary table that
contains the column. If absent the column is
assumed to be in the primary table of the appli-
cable entity.

Not set, column is
in primary table.

Type Name Description Default
 6/25/05 138

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

umns

eld.

derly-
use of

rovider
o pri-

ponsi-
these
Example:

@ManyToOne
@JoinColumns({
 @JoinColumn(name="ADDR_ID", referencedColumnName="ID"),
 @JoinColumn(name="ADDR_ZIP", referencedColumnName="ZIP")
})
public Address getAddress() { return address; }

9.1.8 Id Annotation

TheId annotation selects the identifier property of an entity root class. By default, the mapped col
of this property are assumed to form the primary key of the primary table. If noColumn annotation is
specified, the primary key column name is assumed to be the name of the identifier property or fi

Primary key generation strategies may also be specified in theId annotation. The types of id generation
are defined by theGeneratorType enum:

public enum GeneratorType { TABLE, SEQUENCE, IDENTITY, AUTO, NONE };

The TABLE strategy indicates that the persistence provider should assign identifiers using an un
ing database table to ensure uniqueness. The SEQUENCE and IDENTITY strategies specify the
a database sequence or identity column, respectively. AUTO indicates that the persistence p
should pick an appropriate strategy for the particular database. Specifying NONE indicates that n
mary key generation by the persistence provider should occur, and that the application will be res
ble for assigning the primary key. This specification does not define the exact behavior of
strategies.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {
 GeneratorType generate() default NONE;
 String generator() default "";
}

Table 9 lists the annotation elements that may be specified for anId annotation.

Table 9 Id Annotation Elements

Type Name Description Default

GeneratorType generate (Optional) The type of primary key generation
that the persistence provider should use to
generate the annotated entity primary key.

GeneratorType.NONE (no pri-
mary key generation)

String generator (Optional) The generator annotation element
selects a specific primary key generator that is
defined by an annotation.

Default id generator supplied
by persistence provider.
139 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

ns
. The
t

rma-
Examples:

@Id
public Long getId() { return id; }

@Id(generate=SEQUENCE, generator="CUST_SEQ")
@Column(name="CUST_ID")
public Long getId() { return id; }

@Id(generate=TABLE, generator="CUST_GEN")
@Column(name="CUST_ID")
Long id;

9.1.9 Attrib uteOverride Annotation
TheAttributeOverride annotation is used to override mappings of properties or fields. Colum
in the overrides apply to the current primary table for the class that contains the annotation
AttributeOverride (or AttributeOverrides) annotation may be used on an entity tha
extends an embeddable superclass or on an embedded field or property. IfAttributeOverride is
not specified, the column is mapped the same as in the original mapping.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {
 String name();
 Column column();
}

Table 10 lists the annotation elements that may be specified for aAttributeOverride annotation.

Table 10 AttributeOverride Annotation Elements

9.1.10 Attrib uteOverrides Annotation
The mappings of multiple properties or fields may be overridden. In this case, the overriding info
tion must be enclosed with anAttributeOverrides annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
 AttributeOverride[] value();
}

Type Name Description Default

String name (Required) The name of the property that is being mapped if
access is set to PROPERTY, or the name of the field if access
is set to FIELD in the embedded object.

Column column (Required) The column that is being mapped to the persis-
tent attribute. The mapping type will remain the same as is
defined in the embeddable class.
 6/25/05 140

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

ss. It

lass.
nd the
st cor-
”. The

that
9.1.11 EmbeddedId Annotation

TheEmbeddedId annotation is used to denote a composite primary key that is an embeddable cla
may be applied to a persistent field or property of the entity class. There should only be oneEmbedde-
dId annotation and noId annotations when theEmbeddedId annotation is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

Example:

@EmbeddedId
protected EmployeePK empPK;

9.1.12 IdClass Annotation
The IdClass annotation is used to denote a composite primary key. It is applied to the entity c
The composite primary key class corresponds to multiple fields or properties of the entity class, a
names of primary key fields or properties in the primary key class and those of the entity class mu
respond and their types must be the same. See Section 2.1.4, “Primary Keys and Entity Identity
Id annotation may also be applied to such fields or properties, however this is not required.

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {

Class value();
}

Example:

@IdClass(com.acme.EmployeePK.class)
@Entity(access=FIELD)
public class Employee {
 @Id String empName;
 @Id Date birthDay;
...
}

9.1.13 Transient Annotation
TheTransient annotation is used to annotate a property or field of the entity class. It specifies
the property or field is not persistent.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}
141 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

This
sin-

e not
ity
ta-

li-

y be
rap-

agerly
hed
h the
r

9.1.14 Version Annotation

TheVersion annotation specifies the version property (optimistic lock value) of an entity class.
is used to ensure integrity when reattaching and for overall optimistic concurrency control. Only a
gle Version property/field should be used per class; applications that use more than one ar
expected to be portable. TheVersion property should be mapped to the primary table for the ent
class; applications that map theVersion property to a table other than the primary table are not por
ble.

Fields or properties that are specified with theVersion annotation should not be updated by the app
cation.

The following types are supported for version properties:int , Integer , short , Short , long ,
Long , Timestamp .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

Example:

@Version
@Column("OPTLOCK")
protected int getVersionNum() { return versionNum; }

9.1.15 Basic Annotation

The Basic annotation is the simplest type of mapping to a database column. It can optionall
applied to any persistent property or instance variable of the following type: Java primitive types, w
pers of the primitive types, java.lang.String , java.math.BigInteger ,
java.math.BigDecimal , java.util.Date , java.util.Calendar , java.sql.Date ,
java.sql.Time , java.sql.Timestamp , byte[] , Byte[] , char[] , Character[] ,
enums, and any other type that implements Serializable.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER;
TemporalType temporalType() default NONE;
boolean optional() default true;

}

TheFetchType enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER };

The EAGER strategy is a requirement on the persistence provider runtime that data should be e
fetched. The LAZY strategy is ahint to the persistence provider runtime that data should be fetc
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for whic
LAZY strategy hint has been specified. ForBasic properties, lazy fetching might only be available fo
properties which are always accessed via the get/set pair.
 6/25/05 142

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

y be

her the
TheTemporalType enum defines the mapping for temporal types.

public enum TemporalType {
DATE, //java.sql.Date
TIME, //java.sql.Time
TIMESTAMP, //java.sql.Timestamp
NONE

}

The optional element can be used a a hint as to whether the value of the field or property ma
null. It is disregarded for primitive types, which are considered non-optional.

Table 11 lists the annotation elements that may be specified for aBasic annotation.

Table 11 Basic Annotation Elements

Examples:

@Basic
protected String name;

@Basic(fetch=LAZY)
protected String getName() { return name; }

@Basic(fetch=LAZY)
@Column(name="EMP_PIC")
protected byte[] pic;

An enum can be mapped to either a string or an integer, and depending upon the column type eit
ordinal value or string value of the enum will be stored.

Type Name Description Default

FetchType fetch (Optional) Whether the value of the field or
property should be lazy loaded or eagerly
fetched.

EAGER

TemporalType tempo-
ralType

(Optional) The type used in mapping a tempo-
ral type.

NONE

boolean optional (Optional) Whether the value of the field or
property may be null. This is a hint and is dis-
regarded for primitive types; it may be used in
schema generation.

true
143 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

mn of

ct to a
by the

ta
ersis-
Example:

public enum EmployeeStatus { FULL_TIME, PART_TIME, SEASONAL, CONTRACT
}
public enum SalaryRate { PAROLE, JUNIOR, INTERMEDIATE, SENIOR, MAN-
AGER, EXECUTIVE }

@Entity public class Employee {
 ...
 public EmployeeStatus getStatus() {...}
 public SalaryRate getPayScale() {...}
 ...
}

If the status property were mapped to a column of type integer, and the payscale property to a colu
varchar type, an instance that had a status ofPART_TIMEand a pay rate ofJUNIORwould have a row
stored in the table withSTATUS set to 1 andPAYSCALE set to"JUNIOR" .

9.1.16 Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large obje
database-supported large object type. A Lob may be either a binary or character type, as defined
LobType enum.

public enum LobType { BLOB, CLOB };

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {

FetchType fetch() default LAZY;
LobType type() default BLOB;
boolean optional() default true;

}

Blob fields may be defined to be of typeByte[] or a Serializable type.

Clob fields may be defined to be of typechar[] , Character[] or String .

The LAZY strategy for Blob and Clob fields is ahint to the persistence provider runtime that da
should be fetched lazily when it is first accessed. The EAGER strategy is a requirement on the p
tence provider runtime that data should be eagerly fetched.

Examples:

@Lob
@Column(name="PHOTO" columnDefinition="BLOB NOT NULL")
protected JPEGImage picture;

@Lob(fetch=EAGER, type=CLOB)
@Column(name="REPORT")
protected String report;
 6/25/05 144

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

t has
can

ciated

entity
o-
ed to
Table 12 LobAnnotation Elements

9.1.17 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class tha
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it
usually be inferred from the type of the object being referenced.

The cascade set will cause the specified cascadable operations to be propagated to the asso
entity. The operations that are cascadable are defined by theCascadeType enum:

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};

Multiple operations may be included in the set. The valuecascade=ALL is equivalent tocas-
cade={PERSIST, MERGE, REMOVE, REFRESH} .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

The EAGER strategy is a requirement on the persistence provider runtime that the associated
should be eagerly fetched. The LAZY strategy is ahint to the persistence provider runtime that the ass
ciated entity should be fetched lazily when it is first accessed. The implementation is permitt
eagerly fetch associations for which the LAZY strategy hint has been specified.

Table 13 lists the annotation elements that may be specified for aManyToOne annotation.

Type Name Description Default

FetchType fetch (Optional) Whether the lob should be lazy
loaded or eagerly fetched.

LAZY

LobType type (Optional) The type of the lob. BLOB

boolean optional (Optional) Whether the value of the field or
property may be null. This is a hint; it may be
used in schema generation.

true
145 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

o-one
can
Table 13 ManyToOne Annotation Elements

Example:

@ManyToOne(optional=false)
@JoinColumn(name="CUST_ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }

9.1.18 OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-t
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it
usually be inferred from the type of the object being referenced.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
 String mappedBy() default "";
}

Table 14 lists the annotation elements that may be specified for aOneToOne annotation.

Table 14 OneToOne Annotation Elements

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target of
the association.

The type of the field or
property that stores the
association.

CascadeType[] cascade (Optional) The operations that should be cas-
caded to the target of the association.

No operations are cas-
caded.

FetchType fetch (Optional) Hint to the implementation as to
whether the association should be lazy loaded
or eagerly fetched. The EAGER strategy is a
requirement on the persistence provider runt-
ime that the associated entity should be eagerly
fetched.

EAGER

boolean optional (Optional) Whether the association is optional.
If set to false then a non-null relationship must
always exist.

true

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target of
the association.

The type of the property
that stores the association.
 6/25/05 146

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

ary key
Example: One-to-one association that maps a foreign key column.

On Customer class:

@OneToOne(optional=false)
@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

@OneToOne(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example: One-to-one association that assumes both the source and target share the same prim
values.

On Employee class:

@Entity(access=FIELD)
public class Employee {

@Id Integer id;

@OneToOne @PrimaryKeyJoinColumn
EmployeeInfo info;
...

}

On EmployeeInfo class:

@Entity(access=FIELD)
public class EmployeeInfo {

@Id Integer id;
...

}

CascadeType[] cascade (Optional) The operations that should be cas-
caded to the target of the association.

No operations are cas-
caded.

FetchType fetch (Optional) Hint to the implementation as to
whether the association should be lazy loaded
or eagerly fetched. The EAGER strategy is a
requirement on the persistence provider runt-
ime that the associated entity should be eagerly
fetched.

EAGER

boolean optional (Optional) Whether the association is optional.
If set to false then a non-null relationship must
always exist.

true

String mappedBy (Optional) The field that owns the relationship.
The mappedBy element is only specified on the
inverse (non-owning) side of the association.

Type Name Description Default
147 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

entity

-
is
-

9.1.19 OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

If the Collection is defined using generics to specify the element type then the associated target
type need not be specified; otherwise the target entity class must be specified.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

Table 15 lists the annotation elements that may be specified for aOneToMany annotation.

Table 15 OneToMany Annotation Elements

The default schema-level mapping for unidirectional one-to-many relationships uses a join
table, as described in Section 2.1.8.5. Unidirectional one-to-many relationships may be imple
mented using one-to-many foreign key mappings, however, such support is not required in th
release. Applications that want to use a foreign key mapping strategy for one-to-many relation
ships should make these relationships bidirectional to ensure portability.

Example 1 : One-to-Many association using generics

In Customer class:

@OneToMany(cascade=ALL, mappedBy=”customer”)
public Set<Order> getOrders() { return orders; }

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target
of the association. Optional only if the Col-
lection property is defined using Java gener-
ics. Must be specified otherwise.

The parameter type of the
Collection when defined
using generics.

CascadeType[] cascade (Optional) The operations that should be cas-
caded to the target of the association.

No operations are cascaded.

FetchType fetch (Optional) Whether the association should be
lazy loaded or eagerly fetched. The EAGER
strategy is a requirement on the persistence
provider runtime that the associated entities
should be eagerly fetched.

LAZY

String mappedBy The field that owns the relationship.
Required unless the relationship is unidirec-
tional.
 6/25/05 148

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

the

oncate-
In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2: One-to-Many association without using generics

In Customer class:

@OneToMany(targetEntity=com.acme.Order.class, cascade=ALL,
mappedBy=”customer”)
public Set getOrders() { return orders; }

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

9.1.20 JoinTable Annotation

A JoinTable annotation is specified on the owning side of a many-to-many association. If
JoinTable annotation is missing, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables c
nated together (owning side first) using an underscore.

@Target({METHOD, FIELD})
public @interface JoinTable {
 Table table() default @Table(specified=false);
 JoinColumn[] joinColumns() default {};
 JoinColumn[] inverseJoinColumns() default {};
}

Table 16 lists the annotation elements that may be specified for aJoinTable annotation.

Table 16 JoinTable Annotation Elements

Type Name Description Default

Table table (Optional) The table definition for the
join table.

A default Table definition,
having as its name the con-
catenated names of the two
associated entity primary
tables, separated by an
underscore.
149 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

the
s does

side.
des-
Example:

@JoinTable(
 table=@Table(name=CUST_PHONE),
 joinColumns=

@JoinColumn(name="CUST_ID", referencedColumnName="ID"),
 inverseJoinColumns=

@JoinColumn(name="PHONE_ID", referencedColumnName="ID")
)

9.1.21 ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If
Collection is defined using generics to specify the element type, the associated target entity clas
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning or inverse
The join table is specified on the owning side. If the association is bidirectional, either side may be
ignated as the owning side.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {

Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

}

The annotation elements listed in Table 15 apply for aManyToMany annotation.

Example 1:

In Customer class:

@ManyToMany(cascade=PERSIST)
@JoinTable(table=@Table(name="CUST_PHONES"))
public Set<PhoneNumber> getPhones() { return phones; }

JoinCol-
umn[]

joinColumns (Optional) Define the foreign key col-
umns of the join table which refer-
ence the primary table of the entity
owning the association (i.e. the own-
ing side of the association).

The primary key columns of
the entity and the foreign key
columns in the join table are
assumed to have the same
names.

JoinCol-
umn[]

inverseJoinColumns (Optional) Define the foreign key col-
umns of the join table which refer-
ence the primary table of the entity
that does not own the association (i.e.
the inverse side of the association).

The primary key columns of
the entity and the foreign key
columns in the join table are
assumed to have the same
names.

Type Name Description Default
 6/25/05 150

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

that is
In PhoneNumber class:

@ManyToMany(cascade=PERSIST, mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

Example 2:

In Customer class:

@ManyToMany(targetEntity=com.acme.PhoneNumber.class, cascade=PERSIST)
public Set getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(targetEntity=com.acme.Customer.class, cascade=PERSIST,
mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:

In Customer class:

@ManyToMany(cascade=PERSIST)
@JoinTable(
 table=@Table(name=CUST_PHONE),
 joinColumns=

@JoinColumn(name="CUST_ID", referencedColumnName="ID"),
 inverseJoinColumns=

@JoinColumn(name="PHONE_ID", referencedColumnName="ID")
)
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumberClass:

@ManyToMany(cascade=PERSIST, mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

9.1.22 MapK ey Annotation
The MapKey annotation is used to specify the map key for associations of typejava.util.Map .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
 String name() default "";
}

Thename element designates the name of the persistent field or property of the associated entity
used as the map key. Ifname is not specified, by default the primary key is used as the map key.

If the primary key is a composite primary key and is mapped asIdClass , an instance of the primary
key class is used as the key.
151 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.
Example 1:

@Entity
public class Department {
 ...
 @OneToMany(mappedBy="department")
 @MapKey(name="empId")
 public Map<Integer, Employee> getEmployees() {... }
 ...
}

@Entity
public class Employee {
 private empId;
 @Id Integer getEmpid() { return empId; }

 @ManyToOne
 @JoinColumn(name="dept_id")
 public Department getDepartment() { ... }
 ...
}

Example 2:

@Entity
public class Department {
 ...
 @OneToMany(mappedBy="department")
 @MapKey(name="empPK")
 public Map<EmployeePK, Employee> getEmployees() {... }
 ...
 }
@Entity(access=FIELD)
public class Employee {
 @EmbeddedId EmployeePK empPK;
 ...
 @ManyToOne
 @JoinColumn(name="dept_id")
 public Department getDepartment() { ... }
 ...

 }

@Embeddable(access=FIELD)
public class EmployeePK {
 String name;
 Date bday;
}

 6/25/05 152

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

at the

ciated
arison

hy.

ss, and
ategies.
9.1.23 OrderBy Annotation
TheOrderBy annotation specifies the ordering of the elements of a collection valued association
point when the association is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
 String value() default "";
}

The syntax of the ordering element is anorderby_list, as follows:

orderby_list::= orderby_item [,orderby_item]*
orderby_item::= property_or_field_name [ASC | DESC]

If ASC or DESC is not specified,ASC (ascending order) is assumed.

If the ordering element is not specified, ordering by the primary key is assumed.

The property or field name must correspond to that of a persistent property or field of the asso
class. The properties or fields used in the ordering must correspond to columns for which comp
operators are supported.

Example:

@Entity public class Course {
 ...
 @ManyToMany
 @OrderBy("lastname ASC")
 public List<Student> getStudents() {...};
 ...
}

@Entity public class Student {
 ...
 @ManyToMany(mappedBy="students")
 @OrderBy // PK is assumed
 public Set<Course> getCourses() {...};
 ...
}

9.1.24 Inheritance Annotation

The Inheritance annotation defines the inheritance strategy to be used for an entity class hierarc

The three inheritance mapping strategies are the single table per class hierarchy, table per cla
joined subclass strategies. See Section 2.1.10 for a more detailed discussion of inheritance str
The inheritance strategy options are defined by theInheritanceType enum:

public enum InheritanceType
{ SINGLE_TABLE, TABLE_PER_CLASS, JOINED };
153 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

, but

rsis-
ed by

ot

egy is
Support for the TABLE_PER_CLASS and JOINED mapping strategies is optional in this release
will be required in the next.

For the SINGLE_TABLE mapping strategy, and potentially also for the JOINED strategy, the pe
tence provider will use a type discriminator column. The supported discriminator types are defin
theDiscriminatorType enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The strategy and thediscriminatorType are only specified once per class hierarchy (in the ro
class), while thediscriminatorValue should be specified for each class in the hierarchy.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {

InheritanceType strategy() default SINGLE_TABLE;
DiscriminatorType discriminatorType() default STRING;
String discriminatorValue() default "";

}

If no inheritance type is specified for a class hierarchy, the single table per class hierarchy strat
used.

Table 17 lists the annotation elements that may be specified for aInheritance annotation.

Table 17 Inheritance Annotation Elements

Type Name Description Default

InheritanceType strategy (Optional) The table strat-
egy to use to store the
entity inheritance hierar-
chy.

InheritanceType.SINGLE_TABLE

DiscriminatorType discriminatorType (Optional) The type of
object/column to use as a
class discriminator.

DiscriminatorType.STRING

String discriminatorValue (Optional) The value that
indicates that the row is an
entity of the annotated
entity type.

Provider-specific function to gener-
ate a String representing the entity
class
 6/25/05 154

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

for-

class;
a
the

rat-
s of the
Example:

@Entity
@Table(name="CUST")
@Inheritance(strategy=SINGLE_TABLE,

discriminatorType=STRING,
discriminatorValue="CUST")

public class Customer { ... }

@Entity
@Inheritance(discriminatorValue="VCUST")
public class ValuedCustomer extends Customer { ... }

9.1.25 PrimaryK eyJoinColumn Annotation

ThePrimaryKeyJoinColumn annotation specifies the primary key columns that are used as a
eign key to join to another table. ThePrimaryKeyJoinColumn annotation is used to join the pri-
mary table of an entity subclass in the JOINED mapping strategy to the primary table of its super
together with aSecondaryTable annotation to join a secondary table to a primary table; or in
OneToOnemapping in which the primary key of the referencing entity is used as a foreign key to
referenced entity.

If no PrimaryKeyJoinColumn annotation is specified for a subclass in the JOINED mapping st
egy, the foreign key columns are assumed to have the same names as the primary key column
primary table of the superclass.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {
 String name() default "";
 String referencedColumnName() default "";
 String columnDefinition() default "";
}

Table 18 lists the annotation elements that may be specified for aPrimaryKeyJoinColumn annota-
tion.

Table 18 PrimaryKeyJoinColumn Annotation Elements

Type Name Description Default

String name The name of the primary key col-
umn of the current table.

The same name as the primary key
column of the table for the referenc-
ing entity.

String referencedColumnName (Optional) The name of the pri-
mary key column of the table
being joined to.

The same name as the primary key
column of the table for the refer-
enced entity.

String columnDefinition (Optional) The SQL fragment that
is used when generating the DDL
for the column. This should not be
specified for a OneToOne primary
key association.

Generated SQL to create a column
of the inferred type.
155 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.
Example: Customer and ValuedCustomer subclass

@Entity
@Table(name="CUST")
@Inheritance(strategy=JOINED,

discriminatorType=STRING,
discriminatorValue="CUST")

public class Customer { ... }

@Entity
@Table(name="VCUST")
@Inheritance(discriminatorValue="VCUST")
@PrimaryKeyJoinColumn(name="CUST_ID")
public class ValuedCustomer extends Customer { ... }

9.1.26 PrimaryK eyJoinColumns Annotation

Composite keys are supported via thePrimaryKeyJoinColumns annotation.

@Target({TYPE}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn[] value();
}

Example: ValuedCustomer subclass

@Entity
@Table(name="VCUST")
@Inheritance(discriminatorValue="VCUST")
@PrimaryKeyJoinColumns({

@PrimaryKeyJoinColumn(name="CUST_ID",
referencedColumnName="ID"),

@PrimaryKeyJoinColumn(name="CUST_TYPE",
referencedColumnName="TYPE")

})
public class ValuedCustomer extends Customer { ... }
 6/25/05 156

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

or

the
Example: OneToOne relationship between Employee and EmployeeInfo classes

public class EmpPK {
public Integer id;
public String name;

}

@Entity(access=FIELD)
@IdClass(com.acme.EmpPK.class)
public class Employee {

 @Id Integer id;
 @Id String name;

 @OneToOne
 @PrimaryKeyJoinColumns({
 @PrimaryKeyJoinColumn(name="ID", referencedColumn-
Name="EMP_ID"),
 @PrimaryKeyJoinColumn(name="NAME", referencedColumn-
Name="EMP_NAME")})
 EmployeeInfo info;

 ...
}

@Entity(access=FIELD)
@IdClass(com.acme.EmpPK.class)
public class EmployeeInfo {

 @Id @Column(name="EMP_ID")
 Integer id;
 @Id @Column(name="EMP_NAME")
 String name;

 ...
}

9.1.27 DiscriminatorColumn Annotation

The DiscriminatorColumn annotation is used to define the discriminator column f
SINGLE_TABLE and JOINED mapping strategies.

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default "";
String columnDefinition() default "";
int length() default 10;

}

If the DiscriminatorColumn annotation is missing, and a discriminator column is required,
name of the discriminator column defaults to "TYPE".

Table 19 lists the annotation elements that may be specified for aDiscriminatorColumn annota-
tion.
157 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

ning
edded
Table 19 DiscriminatorColumn Annotation Elements

Example:

@Entity
@Table(name="CUST")
@Inheritance(strategy=SINGLE_TABLE,

discriminatorType=STRING,
discriminatorValue="CUSTOMER")

@DiscriminatorColumn(name="DISC", length=20)
public class Customer { ... }

9.1.28 Embeddable Annotation

TheEmbeddable annotation is used to mark an object that is stored as an intrinsic part of an ow
entity and shares the identity of that entity. Each of the persistent properties or fields of the emb
object is mapped to the database table. OnlyBasic , Column , andLob mapping annotations may be
used to map embedded objects.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {

AccessType access() default PROPERTY;
}

Table 20 lists the annotation elements that may be specified for anEmbeddable annotation.

Table 20 Embeddable Annotation Elements

Type Name Description Default

String name (Optional) The name of column to be used for
the discriminator.

“TYPE”

String columnDefinition (Optional) The SQL fragment that is used
when generating the DDL for the discrimina-
tor column.

Provider-generated SQL to
create a column of the speci-
fied discriminator type.

String length (Optional) The column length for
String-based discriminator types. Ignored for
other discriminator types.

10

Type Name Description Default

AccessType access (Optional) Specifies how the persistence provider runtime accesses
the persistent attributes of the embedded object, either through its
properties or its fields.

PROPERTY
 6/25/05 158

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

class.
s own

ng infor-

ept
rclass.
tables.
Example:

@Embeddable(access=FIELD)
public class EmploymentPeriod {

java.util.Date startDate;
java.util.Date endDate;
...

}

9.1.29 Embedded Annotation

TheEmbedded annotation may be used in an entity class when it is using a shared embeddable
The entity may override the column mappings declared within the embeddable class to apply to it
entity table.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}
}

Example:

@Embedded
@AttributeOverrides({

@AttributeOverride(name="startDate", column=@Col-
umn("EMP_START")),
 @AttributeOverride(name="endDate", column=@Column("EMP_END"))
})
public EmploymentPeriod getEmploymentPeriod() { ... }

9.1.30 EmbeddableSuperclass Annotation
TheEmbeddableSuperclass annotation designates an embedded superclass.

A class designated as an embeddable superclass has no separate table defined for it. Its mappi
mation is applied to the entities that inherit from it.

A class designated asEmbeddableSuperclass can be mapped in the same way as an entity exc
that the mappings will apply only to its subclasses since no table exists for the embeddable supe
When applied to the subclasses the inherited mappings will apply in the context of the subclass
Mapping information may be overridden in such subclasses by using theAttributeOverride
annotation.

@Target(TYPE) @Retention(RUNTIME)
public @interface EmbeddableSuperclass {
 AccessType access() default PROPERTY;
 }

The semantics of theaccess element are the same as for the Entity annotation.

9.1.31 SequenceGenerator Annotation
159 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.

fer-
t

d vis-
it is

d by
he
and

prac-
The SequenceGenerator annotation defines a primary key or id generator which may be re
enced by name when annotating the id attribute (see@Id annotation). A generator may be defined a
either the class, method, or field level. The level at which it is defined will depend upon the desire
ibility and sharing of the generator. No scoping or visibility rules are actually enforced. However,
good practice to define the generator at the level for which it will be used.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {
 String name();
 String sequenceName() default "";
 int initialValue() default 0;
 int allocationSize() default 50;
}

Table 21 lists the annotation elements that may be specified for aSequenceGenerator annotation.

Table 21 SequenceGenerator Annotation Elements

Example:

@SequenceGenerator(name="EMP_SEQ", allocationSize=25)

9.1.32 TableGenerator Annotation

TheTableGenerator annotation defines a primary key or id generator which may be reference
name when annotating the id attribute (see@Id annotation). A generator may be defined at either t
class, method, or field level. The level at which it is defined will depend upon the desired visibility
sharing of the generator. No scoping or visibility rules are actually enforced. However, it is good
tice to define the generator at the level for which it will be used.

Type Name Description Default

String name (Required) A unique name for the generator that can be refer-
enced by one or more classes to be the generator for ids.

String sequenceName (Optional) The name of the database sequence object to obtain ids
from.

A provider-
chosen
value

int initialValue (Optional) The value to set the sequence object to start generating
from once it has been created.

0

int allocationSize (Optional) The amount to increment by when allocating sequence
numbers from the sequence.

50
 6/25/05 160

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

e will
e nor-
The table is used by the persistence provider to store generated id values for entities. An entity typ
typically use its own row in the table to generate the id values for that entity class. The id values ar
mally positive integers.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {

String name();
Table table() default @Table(specified=false);
String pkColumnName() default "";
String valueColumnName() default "";
String pkColumnValue() default "";
int initialValue() default 0;
int allocationSize() default 50;

}

Table 22 lists the annotation elements that may be specified for aTableGenerator annotation.

Table 22 TableGenerator Annotation Elements

Type Name Description Default

String name (Required) A unique name for the genera-
tor that can be referenced by one or more
classes to be the generator for ids.

Table table (Optional) Table that stores the generated
ids. Full table annotation that may be used
when a table definition is required.

Name is chosen by persistence
provider

String pkColumnName (Optional) Name of the primary key col-
umn in the table.

A provider-chosen name

String valueColumn-
Name

(Optional) Name of the column that stores
the last value generated.

A provider-chosen name

String pkColumnValue (Optional) The primary key value in the
generator table that distinguishes this set
of generated values from others that may
be stored in the table.

A provider-chosen value to store
in the primary key column of the
generator table

int initialValue (Optional) The initial value to be used
when allocating id numbers from the gen-
erator.

0

int allocationSize (Optional) The amount to increment by
when allocating id numbers from the gen-
erator.

50
161 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Annotations for Object/Relational Mapping

Sun Microsystems, Inc.
Examples:

@Entity public class Employee {
...
@TableGenerator(name="empGen",

table=@Table(name="ID_GEN"),
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

@Id(generate=TABLE, generator="empGen")
public int id;
...

}

@Entity public class Address {
...
@TableGenerator(name="addressGen",

table=@Table(name="ID_GEN"),
pkColumnValue="ADDR_ID")

@Id(generate=TABLE, generator="addressGen")
public int id;
...

}

 6/25/05 162

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft Metadata for

Sun Microsystems, Inc.
9.2 Examples of the Application of Annotations for
Object/Relational Mapping

9.2.1 Examples of Simple Mappings

@Entity(access=FIELD)
public class Customer {

 @Id(generate=AUTO) Long id;
 @Version protected int version;
 @ManyToOne Address address;
 @Basic String description;
 @OneToMany(targetEntity=com.acme.Order.class,
 mappedBy="customer")
 Collection orders = new Vector();
 @ManyToMany(mappedBy="customers")
 Set<DeliveryService> serviceOptions = new HashSet();

 public Customer() {}

 public Long getId() { return id; }

 public Address getAddress() { return address; }
 public void setAddress(Address addr) {
 this.address = addr;
 }

 public String getDescription() { return description; }
 public void setDescription(String desc) {
 this.description = desc;
 }

 public Collection getOrders() { return orders; }

 public Set<DeliveryService> getServiceOptions() {
 return serviceOptions;
 }
}

@Entity
public class Address {

 private Long id;
 private int version;
 private String street;

 public Address() {}

 @Id(generate=AUTO)
 public Long getId() { return id; }
 protected void setId(Long id) { this.id = id; }

 @Version
 public int getVersion() { return version; }
163 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

Sun Microsystems, Inc.
 protected void setVersion(int version) {
 this.version = version;
 }

 public String getStreet() { return street; }
 public void setStreet(String street) {
 this.street = street;
 }
}

@Entity
public class Order {

 private Long id;
 private int version;
 private String itemName;
 private int quantity;
 private Customer cust;

 public Order() {}

 @Id(generate=AUTO)
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 @Version
 protected int getVersion() { return version; }
 protected void setVersion(int version) {
 this.version = version;
 }

 public String getItemName() { return itemName; }
 public void setItemName(String itemName) {
 this.itemName = itemName;
 }

 public int getQuantity() { return quantity; }
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }

 @ManyToOne
 public Customer getCustomer() { return cust; }
 public setCustomer(Customer cust) {
 this.cust = cust;
 }
}

@Entity
@Table(name="DLVY_SVC")
public class DeliveryService {

 private String serviceName;
 private int priceCategory;
 private Collection customers;

 public DeliveryService() {}
 6/25/05 164

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft Metadata for

Sun Microsystems, Inc.
 @Id
 public String getServiceName() { return serviceName; }
 public void setServiceName(String serviceName) {
 this.serviceName = serviceName;
 }

 public int getPriceCategory() { return priceCategory; }
 public void setPriceCategory(int priceCategory) {
 this.priceCategory = priceCategory;
 }

 @ManyToMany(targetEntity=com.acme.Customer.class)
 @JoinTable(table=@Table(name="CUST_DLVRY"))
 public Collection getCustomers() { return customers; }
 public setCustomers(Collection customers) {
 this.customers = customers;
 }
}

165 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

Sun Microsystems, Inc.
9.2.2 A Mor e Complex Example

/***** Employee class *****/

@Entity
@Table(name="EMPL")
@SecondaryTable(name="EMP_SALARY",
 pkJoin=@PrimaryKeyJoinColumn(name="EMP_ID",
 referencedColumnName="ID"))
public class Employee implements Serializable {

 private Long id;
 private int version;
 private String name;
 private Address address;
 private Collection phoneNumbers;
 private Collection<Project> projects;
 private Long salary;
 private EmploymentPeriod period;

 public Employee() {}

 @Id(generate=TABLE)
 public Integer getId() { return id; }
 protected void setId(Integer id) { this.id = id; }

 @Version
 @Column(name="EMP_VERSION", nullable=false)
 public int getVersion() { return version; }
 protected void setVersion(int version) {
 this.version = version;
 }

 @Column(name="EMP_NAME", length=80)
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 @ManyToOne(cascade=PERSIST, optional=false)
 @JoinColumn(name="ADDR_ID",
 referencedColumnName="ID", nullable=false)
 public Address getAddress() { return address; }
 public void setAddress(Address address) {
 this.address = address;
 }

 @OneToMany(targetEntity=com.acme.PhoneNumber.class,
 cascade=ALL, mappedBy="employee")
 public Collection getPhoneNumbers() { return phoneNumbers; }
 public void setPhoneNumbers(Collection phoneNumbers) {
 this.phoneNumbers = phoneNumbers;
 }

 @ManyToMany(mappedBy="employee", cascade=PERSIST)
 @JoinTable(table=@Table(name="EMP_PROJ"),
 joinColumns=@JoinColumn(
 name="EMP_ID", referencedColumnName="ID"),
 inverseJoinColumns=@JoinColumn(
 name="PROJ_ID", referencedColumnName="ID"))
 public Collection<Project> getProjects() { return projects; }
 6/25/05 166

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft Metadata for

Sun Microsystems, Inc.
 public void setProjects(Collection<Project> projects) {
 this.projects = projects;
 }

 @Column(name="EMP_SAL", secondaryTable="EMP_SALARY")
 public Long getSalary() { return salary; }
 public void setSalary(Long salary) {
 this.salary = salary;
 }

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="startDate",
 column=@Column(name="EMP_START")),
 @AttributeOverride(name="endDate",
 column=@Column(name="EMP_END"))
 })
 public EmploymentPeriod getEmploymentPeriod() {
 return period;
 }
 public void setEmploymentPeriod(EmploymentPeriod period) {
 this.period = period;
 }
}

/***** Address class *****/

@Entity
public class Address implements Serializable {

 private Integer id;
 private int version;
 private String street;
 private String city;

 public Address() {}

 @Id(generate=IDENTITY)
 public Integer getId() { return id; }
 protected void setId(Integer id) { this.id = id; }

 @Version @Column("VERS", nullable=false)
 public int getVersion() { return version; }
 protected void setVersion(int version) {
 this.version = version;
 }

 @Column(name="RUE")
 public String getStreet() { return street; }
 public void setStreet(String street) {
 this.street = street;
 }

 @Column(name="VILLE")
 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }
}

167 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

Sun Microsystems, Inc.
/***** PhoneNumber class *****/

@Entity
@Table(name="PHONE")
public class PhoneNumber implements Serializable {

 private String number;
 private int phoneType;
 private Employee employee;

 public PhoneNumber() {}

 @Id
 public String getNumber() { return number; }
 public void setNumber(String number) {
 this.number = number;
 }

 @Column(name="PTYPE")
 public int getPhonetype() { return phonetype; }
 public void setPhoneType(int phoneType) {
 this.phoneType = phoneType;
 }

 @ManyToOne(optional=false)
 @JoinColumn(name="EMP_ID", referencedColumnName="ID")
 public Employee getEmployee() { return employee; }
 public void setEmployee(Employee employee) {
 this.employee = employee;
 }
}

/***** Project class *****/

@Entity
@Inheritance(strategy=JOINED,
 discriminatorType=STRING,
 discriminatorValue="Proj")
@DiscriminatorColumn(name="DISC")
public class Project implements Serializable {

 private Integer projId;
 private int version;
 private String name;
 private Set<Employee> employees;

 public Project() {}

 @Id(generate=TABLE)
 public Integer getId() { return projId; }
 protected void setId(Integer id) { this.projId = id; }

 @Version
 public int getVersion() { return version; }

protected void setVersion(int version) { this.version = version; }

 @Column(name="PROJ_NAME")
 public String getName() { return name; }
 6/25/05 168

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft Metadata for

Sun Microsystems, Inc.
 public void setName(String name) { this.name = name; }

 @ManyToMany(mappedBy="projects")
 public Set<Employee> getEmployees() { return employees; }
 public void setEmployees(Set<Employee> employees) {
 this.employees = employees;
 }
}

/***** GovernmentProject subclass *****/

@Entity
@Table(name="GOVT_PROJECT")
@Inheritance(discriminatorValue="GovtProj")
@PrimaryKeyJoinColumn(name="GOV_PROJ_ID",
 referencedColumnName="ID")
public class GovernmentProject extends Project {

 private String fileInfo;

 public GovernmentProject() { super(); }

 @Column("INFO")
 public String getFileInfo() { return fileInfo; }
 public void setFileInfo(String fileInfo) {
 this.fileInfo = fileInfo;
 }
}

/***** CovertProject subclass *****/

@Entity
@Table(name="C_PROJECT")
@Inheritance(discriminatorValue="CovProj")
@PrimaryKeyJoinColumn(name="COV_PROJ_ID",
 referencedColumnName="ID")
public class CovertProject extends Project {

 private String classified;

 public CovertProject(String classified) {
 super();
 this.classified = classified;
 }

 @Column(updatable=false)
 public String getClassified() { return classified; }
 protected void setClassified(String classified) {
 this.classified = classified;
 }
}

/***** EmploymentPeriod class *****/

@Embeddable
public class EmploymentPeriod implements Serializable {
169 6/25/05

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

Sun Microsystems, Inc.
 private Date start;
 private Date end;

 public EmploymentPeriod() {}

 @Column(nullable=false)
 public Date getStartDate() { return start; }
 public void setStartDate(Date start) {
 this.start = start;
 }

 public Date getEndDate() { return end; }
 public void setEndDate(Date end) {
 this.end = end;
 }
}

 6/25/05 170

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
Chapter 10 XML Descriptor

The XML descriptor is intended to serve as both an alternative and an overriding mechanism
to the use of Java language metadata annotations.

10.1 XML Schema

This section provides the XML schema for use with the persistence API.
171 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.

s

This is currently work in progress. The contents of this chapter are under discussion in the
Expert Group and are undergoing development and change. We present this information a
illustrative of a XML descriptor alternative and overriding mechanism to the use of Java lan-
guage metadata annotations for object/relational mapping. The intention is for this schema to
parallel the use of annotations in functionality.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://java.sun.com/xml/ns/persistence_ORM"
 targetNamespace="http://java.sun.com/xml/ns/persistence_ORM"
 elementFormDefault="qualified"
 version="1.0">

 <!--
 Top-level element defines entity and embeddable mappings, named queries
 and named id generators. Defines a default package for classnames
 in this mapping.
 -->

 <xsd:element name="entity-mappings">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="package" type="xsd:string" minOccurs="0"/>
 <xsd:element name="default-access" type="access-type"
 default="PROPERTY" minOccurs="0"/>
 <xsd:element name="default-cascade" type="cascade-type"
 minOccurs="0"/>

 <xsd:element name="embeddable-superclass" type="embeddable"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="entity" type="entity"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="embeddable" type="embeddable"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="query" type="query"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="native-query" type="native-query"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="sequence-generator" type="sequence-generator"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="table-generator" type="table-generator"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Defines table, inheritance, attribute and association mappings
 for an entity class.
 -->

 <xsd:complexType name="entity">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="class" type="xsd:string"/>
 <xsd:element name="access" type="access-type" default="PROPERTY"
 minOccurs="0"/>
 <xsd:element name="inheritance-strategy" type="inheritance-type"
 6/25/05 172

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 minOccurs="0"/>

 <xsd:element name="table" type="table" minOccurs="0"/>
 <xsd:element name="secondary-table" type="secondary-table"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="discriminator-column" type="discriminator-col-
umn"
 minOccurs="0"/>
 <xsd:element name="discriminator-type" type="discriminator-type"
 minOccurs="0"/>
 <xsd:element name="discriminator-value" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:element name="primary-key-join-column"
 type="primary-key-join-column"
 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:choice>

 <xsd:choice>
 <xsd:element name="embedded-id" type="xsd:string"/>
 <xsd:sequence>
 <xsd:element name="id-class" type="xsd:string" minOccurs="0"/>
 <xsd:element name="id" type="id"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:choice>

 <xsd:element name="version" type="version" minOccurs="0"/>

 <xsd:element name="basic" type="basic"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="lob" type="lob"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="embedded" type="embedded"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="one-to-one" type="many-to-one"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="many-to-one" type="many-to-one"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="one-to-many" type="one-to-many"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="many-to-many" type="many-to-many"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="transient" type="xsd:string"
 maxOccurs="unbounded" minOccurs="0"/>

 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a secondary table for an entity, and defines attribute
 mappings to columns of that secondary table.
 -->

 <xsd:complexType name="secondary-table">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
173 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 <xsd:element name="schema" type="xsd:string" minOccurs="0"/>
 <xsd:element name="catalog" type="xsd:string" minOccurs="0"/>

 <xsd:element name="primary-key-join-column"
 type="primary-key-join-column"
 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="unique-constraint"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines default attribute mappings for an embeddable superclass.
 -->

 <xsd:complexType name="embeddable-superclass">
 <xsd:sequence>
 <xsd:element name="class" type="xsd:string"/>
 <xsd:element name="access" type="access-type" default="PROPERTY"
 minOccurs="0"/>

 <xsd:choice>
 <xsd:element name="embedded-id" type="xsd:string"/>
 <xsd:sequence>
 <xsd:element name="id-class" type="xsd:string" minOccurs="0"/>
 <xsd:element name="id" type="id"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:choice>

 <xsd:element name="version" type="version" minOccurs="0"/>

 <xsd:element name="basic" type="basic"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="lob" type="lob"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="embedded" type="embedded"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="one-to-one" type="one-to-one"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="many-to-one" type="many-to-one"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="one-to-many" type="one-to-many"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="many-to-many" type="many-to-many"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="transient" type="xsd:string"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines default attribute mappings for an embeddable class.
 -->

 <xsd:complexType name="embeddable">
 <xsd:sequence>
 6/25/05 174

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 <xsd:element name="class" type="xsd:string"/>
 <xsd:element name="access" type="access-type" default="PROPERTY"
 minOccurs="0"/>

 <xsd:element name="basic" type="basic"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="lob" type="lob"
 maxOccurs="unbounded" minOccurs="0"/>

 <xsd:element name="transient" type="xsd:string"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
Declares a primary key attribute and, optionally, a generation strategy.

 -->

 <xsd:complexType name="id">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="generate" type="generator-type" minOccurs="0"/>
 <xsd:element name="generator" type="xsd:string" minOccurs="0" />
 <xsd:element name="column" type="column" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a version attribute.
 -->

 <xsd:complexType name="version">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="column" type="column" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a mapping for a basic attribute.
 -->

 <xsd:complexType name="basic">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="fetch" type="fetch-type" default="EAGER"
 minOccurs="0" />
 <xsd:element name="optional" type="xsd:boolean" default="true"
 minOccurs="0" />

<xsd:element name="temporal-type" type="temporal-type" minOccurs="0" />
 <xsd:element name="column" type="column" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a mapping for a large object attribute.
 -->
175 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 <xsd:complexType name="lob">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="fetch" type="fetch-type" default="LAZY"
 minOccurs="0" />
 <xsd:element name="optional" type="xsd:boolean" default="true"
 minOccurs="0" />
 <xsd:element name="lob-type" type="lob-type" default="BLOB"
 minOccurs="0" />
 <xsd:element name="column" type="column" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares an attribute of an embeddable type, and allows overriding and
 addition of attribute mappings.
 -->

 <xsd:complexType name="embedded">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>

 <xsd:element name="basic" type="basic"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:element name="lob" type="lob"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a one-to-one association mapping to a foreign key column,
 a primary key column, or an inverse one-to-one association.
 -->

 <xsd:complexType name="one-to-one">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
 <xsd:element name="cascade" type="cascade-type" minOccurs="0" />
 <xsd:element name="fetch" type="fetch-type" default="EAGER"
 minOccurs="0" />
 <xsd:element name="optional" type="xsd:boolean" default="true"
 minOccurs="0" />
 <xsd:choice>
 <xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
 <xsd:element name="join-column" type="column"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="primary-key-join-column" type="column"
 minOccurs="0" maxOccurs="unbounded" />

<!-- xsd:element name="join-table" type="join-table" minOccurs="0" /-->
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a many-to-one association mapping to a foreign key column.
 -->

 <xsd:complexType name="many-to-one">
 <xsd:sequence>
 6/25/05 176

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
 <xsd:element name="cascade" type="cascade-type" minOccurs="0" />
 <xsd:element name="fetch" type="fetch-type" default="EAGER"
 minOccurs="0" />
 <xsd:element name="optional" type="xsd:boolean" default="true"
 minOccurs="0" />
 <xsd:choice>
 <xsd:element name="join-column" type="column"
 minOccurs="0" maxOccurs="unbounded" />

<!-- xsd:element name="join-table" type="join-table" minOccurs="0" /-->
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!--
Declares a one-to-many association mapping to an association join table or

 an inverse many-to-one association.
 -->

 <xsd:complexType name="one-to-many">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
 <xsd:element name="cascade" type="cascade-type" minOccurs="0" />
 <xsd:element name="fetch" type="fetch-type" default="LAZY"
 minOccurs="0" />
 <xsd:element name="map-key" type="xsd:string" minOccurs="0" />
 <xsd:element name="order-by" type="xsd:string" minOccurs="0" />
 <xsd:choice>
 <xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
 <xsd:element name="join-table" type="join-table" minOccurs="0" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a many-to-many association mapping to a join table or an
 inverse many-to-many join table.
 -->

 <xsd:complexType name="many-to-many">
 <xsd:sequence>
 <xsd:element name="attribute" type="xsd:string"/>
 <xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
 <xsd:element name="cascade" type="cascade-type" minOccurs="0" />
 <xsd:element name="fetch" type="fetch-type" default="LAZY"
 minOccurs="0" />
 <xsd:element name="map-key" type="xsd:string" minOccurs="0" />
 <xsd:element name="order-by" type="xsd:string" minOccurs="0" />
 <xsd:choice>
 <xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
 <xsd:element name="join-table" type="join-table" minOccurs="0" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a mapped table.
 -->
177 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 <xsd:complexType name="table">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="schema" type="xsd:string" minOccurs="0"/>
 <xsd:element name="catalog" type="xsd:string" minOccurs="0"/>
 <xsd:element name="unique-constraint"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the type discriminator column for a SINGLE_TABLE mapping strat-
egy.
 -->

 <xsd:complexType name="discriminator-column">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0" />
 <xsd:element name="length" type="xsd:integer" minOccurs="0" />
 <xsd:element name="column-definition" type="xsd:string"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a mapped column.
 -->

 <xsd:complexType name="column">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0" />
 <xsd:element name="secondary-table" type="xsd:string"
 minOccurs="0" />

 <xsd:element name="unique" type="xsd:boolean" default="false"
 minOccurs="0" />
 <xsd:element name="nullable" type="xsd:boolean" default="true"
 minOccurs="0" />

 <xsd:element name="length" type="xsd:integer" minOccurs="0" />
 <xsd:element name="precision" type="xsd:integer" minOccurs="0" />
 <xsd:element name="scale" type="xsd:integer" minOccurs="0" />

 <xsd:element name="insertable" type="xsd:boolean" default="true"
 minOccurs="0" />
 <xsd:element name="updatable" type="xsd:boolean" default="true"
 minOccurs="0" />

 <xsd:element name="column-definition" type="xsd:string"
 minOccurs="0" />

 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a join table for an association mapping, and the columns
 used to join to and from that table.
 -->

 <xsd:complexType name="join-table">
 <xsd:sequence>
 6/25/05 178

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="schema" type="xsd:string" minOccurs="0"/>
 <xsd:element name="catalog" type="xsd:string" minOccurs="0"/>

 <xsd:element name="inverse-join-column" type="join-column"
 maxOccurs="unbounded"/>
 <xsd:element name="join-column" type="join-column"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a join condition from a named column of the current table
 to the referenced column of another table.
 -->

 <xsd:complexType name="join-column">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0" />
 <xsd:element name="referenced-column-name" type="xsd:string"
 minOccurs="0" />

<xsd:element name="secondary-table" type="xsd:string" minOccurs="0" />

 <xsd:element name="unique" type="xsd:boolean" default="false"
 minOccurs="0" />
 <xsd:element name="nullable" type="xsd:boolean" default="true"
 minOccurs="0" />

 <xsd:element name="insertable" type="xsd:boolean" default="true"
 minOccurs="0" />
 <xsd:element name="updatable" type="xsd:boolean" default="true"
 minOccurs="0" />

 <xsd:element name="column-definition" type="xsd:string"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the join condition from the primary key column of the
 current table to the primary key column of another table.
 -->

 <xsd:complexType name="primary-key-join-column">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0" />
 <xsd:element name="referenced-column-name" type="xsd:string"
 minOccurs="0" />
 <xsd:element name="column-definition" type="xsd:string"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a named native EJB QL query.
 -->

 <xsd:complexType name="query">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
179 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 <xsd:element name="query-string" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Declares a named native SQL query.
 -->

 <xsd:complexType name="native-query">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="query-string" type="xsd:string"/>
 <xsd:choice>
 <xsd:element name="result-class" type="xsd:string"/>
 <xsd:element name="result-set-mapping" type="result-set-mapping"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines metadata for a native SQL query result set.
 -->

 <xsd:complexType name="result-set-mapping">
 <xsd:sequence>
 <xsd:element name="name" minOccurs="0"/>
 <xsd:element name="entity-result" type="entity-result"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="column-result" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Maps column aliases of a native SQL query result set to attributes
 of an entity class.
 -->

 <xsd:complexType name="entity-result">
 <xsd:sequence>
 <xsd:element name="entity-class" type="xsd:string" />
 <xsd:element name="discriminator-column" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="field-result" type="field-result"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Maps a result set column alias to an attribute name.
 -->

 <xsd:complexType name="field-result">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="column" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 6/25/05 180

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 <!--
 Specifies a unique constraint.
 -->

 <xsd:complexType name="unique-constraint">
 <xsd:sequence>
 <xsd:element name="column-name" type="xsd:string"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a named table-based id generator.
 -->

 <xsd:complexType name="table-generator">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="table" type="table" minOccurs="0"/>
 <xsd:element name="pk-column-name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="pk-column-value" type="xsd:string" minOccurs="0"/>
 <xsd:element name="value-column-name" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="initial-value" type="xsd:integer" default="0"
 minOccurs="0"/>
 <xsd:element name="allocation-size" type="xsd:integer" default="50"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines a named sequence-based id generator.
 -->

 <xsd:complexType name="sequence-generator">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="sequence-name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="initial-value" type="xsd:integer" default="0"
 minOccurs="0"/>
 <xsd:element name="allocation-size" type="xsd:integer" default="50"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Enumeration of attribute access types.
 -->

 <xsd:simpleType name="access-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PROPERTY"/>
 <xsd:enumeration value="FIELD"/>
 </xsd:restriction>
 </xsd:simpleType>
181 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 <!--
 Enumeration of fetch types.
 -->

 <xsd:simpleType name="fetch-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LAZY"/>
 <xsd:enumeration value="EAGER"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--
 Enumeration of LOB types.
 -->

 <xsd:simpleType name="lob-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BLOB"/>
 <xsd:enumeration value="CLOB"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--
 Enumeration of discriminator column types.
 -->

 <xsd:simpleType name="discriminator-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="INTEGER"/>
 <xsd:enumeration value="STRING"/>
 <xsd:enumeration value="CHARACTER"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--
 Enumeration of temporal types.
 -->

 <xsd:simpleType name="temporal-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="DATE"/>
 <xsd:enumeration value="TIME"/>
 <xsd:enumeration value="TIMESTAMP"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--
 Enumeration of cascade styles, specified as, e.g.

 <cascade><persist/><merge/></cascade>

 -->

 <xsd:complexType name="cascade-type">
 <xsd:sequence>
 <!--a list of empty elements -->
 <xsd:element name="all" minOccurs="0"/>
 6/25/05 182

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

Sun Microsystems, Inc.
 <xsd:element name="persist" minOccurs="0"/>
 <xsd:element name="merge" minOccurs="0"/>
 <xsd:element name="remove" minOccurs="0"/>
 <xsd:element name="refresh" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Enumeration of inheritance types.
 -->

 <xsd:simpleType name="inheritance-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SINGLE_TABLE"/>
 <xsd:enumeration value="JOINED"/>
 <xsd:enumeration value="TABLE_PER_CLASS"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--
 Enumeration of generator types.
 -->

 <xsd:simpleType name="generator-type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="TABLE"/>
 <xsd:enumeration value="SEQUENCE"/>
 <xsd:enumeration value="IDENTITY"/>
 <xsd:enumeration value="AUTO"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>
183 6/25/05

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 6/25/05 184

XML Schema Enterprise JavaBeans 3.0, Public Draft Related Documents

Sun Microsystems, Inc.
Chapter 11 Related Documents

[1] Enterprise JavaBeans, v. 3.0. EJB Core Contracts and Requirements.

[2] JSR-250: Common Annotations for the Java Platform.http://jcp.org/en/jsr/detail?id=250.

[3] JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175.

[4] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

[5] Enterprise JavaBeans, v 2.1.http://java.sun.com/products/ejb.

[6] JDBC 3.0 Specification.http://java.sun.com/products/jdbc.

[7] Enterprise JavaBeans, Simplified API, v 3.0.http://java.sun.com/products/ejb.
185 6/25/05

Related Documents Enterprise JavaBeans 3.0, Public Draft XML Schema

Sun Microsystems, Inc.
 6/25/05 186

Early Draft 1 Enterprise JavaBeans 3.0, Public Draft Revision History

Sun Microsystems, Inc.

JB 3.0

any-
Appendix A Revision History

This appendix lists the significant changes that have been made during the development of the E
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Persistence API from single Early Draft 1 document.

Renamed dependent classes as "embedded classes".

Added support for EJB 2.1 style composite keys for entities.

Added support for BLOBs and CLOBs

Clarified rules for defaulting of O/R mapping when OneToOne, OneToMany, ManyToOne, and M
ToMany annotations are used.
187 6/25/05

Revision History Enterprise JavaBeans 3.0, Public Draft Changes Since EDR 2

Sun Microsystems, Inc.

eType
Clarified default mappings for non-relationship fields and properties.

Clarified exceptions for entity lifecycle operations andEntityManager andQuery interface meth-
ods.

Clarified semantics ofcontains method.

Renaming of annotations for dependent objects to reflect "embedded" terminology.

Added EmbeddedId and IdClass annotations to support composite keys.

Added AttributeOverride annotation to support embedded objects and embedded primary keys.

Added annotations to support BLOB/CLOB mappings.

Renamed GeneratorTable annotation as GeneratedIdTable.

Added setFlushMode method to Query interface.

Added missing Transient annotation.

Rename create() method as persist() in EntityManager API, and CREATE as PERSIST in Cascad
enum.

Provided full definition of EJB QL.

Removed POSITION, CHAR_LENGTH, and CHARACTER_LENGTH as redundant.

Added support for mapping of SQL query results.

Extended EJB QL queries to apply to embedded classes.

Added XML descriptor.

Added Related Documents section.

Updated numerous examples.

A.3 Changes Since EDR 2

Clearer formatting for description of merge operation.

Removed requirements for java.sql.Blob and java.sql.Clob.

Added java.util.Date and java.sql.Date as permitted primary key types.

Added introduction to O/R mapping metadata specification.
 6/25/05 188

Changes Since EDR 2 Enterprise JavaBeans 3.0, Public Draft Revision History

Sun Microsystems, Inc.

ns as

map-

erms

r pro-

asic

ng for

ption
ption

n.

de of
Removed primary annotation element from UniqueConstraint, Column, and JoinColumn annotatio
redundant.

Clarified that UniqueConstraint applies in addition to unique constraints entailed by primary key
pings.

Clarified that PostLoad method should be invoked after refresh.

Added caution about use of business logic in accessor methods when access=PROPERTY.

Clarified that precision and scale apply to decimal columns.

Editorial changes to remove implications that entity lifecycle operations entail implementation in t
of a “state” model.

Removed entityType and version elements of Entity annotation.

Added note about the use of EJB QL bulk update and delete operations.

Clarified that fetch=LAZY is a hint; implementations may elect to prefetch.

Clarified that only a single version property is required to be supported per class.

Allowed persistent instance variables to be private.

Removed requirement that if access=FIELD, the fields in the primary key class must be public o
tected.

Extended mapping defaults for fields and properties of byte[], Byte[], char[], and Character[] to B
mapping type.

Made TemporalType enum top-level; added NONE so that it can be used to specify Basic mappi
temporal types.

Clarified that query execution methods getResultList and getSingleResult throw IllegalStateExce
when called for EJB QL UPDATE or DELETE statements; executeUpdate throws IllegalStateExce
when called for EJB QL SELECT statement.

Clarified that constructor names in EJB QL queries must be fully qualified.

Removed requirement for support of BIT_LENGTH function from EJB QL.

The executeUpdate method throws TransactionRequiredException if there is no active transactio

Clarified that EJB QL delete operation does not cascade.

Added support for use of EntityManager in application-managed environments, including outsi
J2EE containers.

Added EntityManager bootstrapping APIs.
189 6/25/05

Revision History Enterprise JavaBeans 3.0, Public Draft Changes Since EDR 2

Sun Microsystems, Inc.

One-

note

this

—this
Added support for extended persistence contexts.

Added support for non-entity classes in the entity inheritance hierarchy.

Added supported support for abstract entity classes in the entity inheritance hierarchy.

Added EmbeddableSuperclass annotation.

Clarifications to EntityManager and Query exceptions.

Added LEFT, EXISTS, ALL, ANY, SOME to EJB QL reserved identifiers.

Renamed InheritanceJoinColumn as PrimaryKeyJoinColumn. Removed usePKasFK from the
ToOne annotation, clarifying that PrimaryKeyJoinColumn can be used instead.

Clarified result types for aggregate functions.

Clarification of TRIM function and its arguments.

In OneToOne, OneToMany, ManyToOne, ManyToMany annotations, targetEntity type is Class,
String.

Merge @Serialized annotation into @Basic.

Added discriminatorColumn element to @EntityResult

Instance variables allowed to be private, package visibility.

Removed restriction about use of identification variable for IS EMPTY in the FROM clause, since
is no longer true given outer joins.

Removed restriction that @Table must have been explicitly specified if @SecondaryTable is used
is unnecessary, since defaults can be used.

Removed specified element for @Column: it is not needed.

Remove operation applied to removed entity is ignored.

EntityManager.find changed to return null if the entity does not exist.

EntityManager.contains doesn’t require a transaction be active.

Added @OrderBy, @MapKey annotations

Clarified rules regarding the availability of detached instances.

Added SIZE function to EJB QL.

Cleaned up EJB QL grammar.
 6/25/05 190

Changes Since EDR 2 Enterprise JavaBeans 3.0, Public Draft Revision History

Sun Microsystems, Inc.

.

Added optional hint to Basic and Lob annotations.

Added EntityManager.getReference().

EJB QL LIKE operator allows string-expressions.

Added chapters with contracts on packaging, deployment, and bootstrapping outside a container

Merged GeneratedIdTable into TableGenerator annotation to resolve overlap between the two.

Updated XML descriptor to match annotations.

Editorial sweep over document.
191 6/25/05

	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 Requirements on the Entity Class
	2.1.1 Persistent Fields and Properties
	2.1.2 Example
	2.1.3 Entity Instance Creation
	2.1.4 Primary Keys and Entity Identity
	2.1.5 Embeddable Classes
	2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
	2.1.7 Entity Relationships
	2.1.8 Relationship Mapping Defaults
	2.1.8.1 Bidirectional OneToOne Relationships
	2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
	2.1.8.3 Unidirectional Single-Valued Relationships
	2.1.8.3.1 Unidirectional OneToOne Relationships
	2.1.8.3.2 Unidirectional ManyToOne Relationships

	2.1.8.4 Bidirectional ManyToMany Relationships
	2.1.8.5 Unidirectional Multi-Valued Relationships
	2.1.8.5.1 Unidirectional OneToMany Relationships
	2.1.8.5.2 Unidirectional ManyToMany Relationships

	2.1.9 Inheritance
	2.1.9.1 Abstract Entity Classes
	2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy
	2.1.9.3 Embeddable Superclasses

	2.1.10 Inheritance Mapping Strategies
	2.1.10.1 Single Table per Class Hierarchy Strategy
	2.1.10.2 Table per Class Strategy
	2.1.10.3 Joined Subclass Strategy

	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Persisting an Entity Instance
	3.2.2 Removal
	3.2.3 Synchronization to the Database
	3.2.4 Detached Entities
	3.2.4.1 Merging Detached Entity State

	3.2.5 Managed Instances
	3.2.6 Transaction Rollback

	3.3 Persistence Context
	3.3.1 Extended Persistence Context

	3.4 Entity Listeners and Callback Methods
	3.4.1 Semantics of the Life Cycle Callback Methods for Entities
	3.4.2 Example

	3.5 Query API
	3.5.1 Query Interface
	3.5.1.1 Example

	3.5.2 Parameter Names
	3.5.3 Named Queries
	3.5.4 Polymorphic Queries
	3.5.5 SQL Queries

	Chapter 4 Query Language
	4.1 Overview
	4.2 EJB QL Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 EJB QL and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Between Expressions
	4.6.8 In Expressions
	4.6.9 Like Expressions
	4.6.10 Null Comparison Expressions
	4.6.11 Empty Collection Comparison Expressions
	4.6.12 Collection Member Expressions
	4.6.13 Exists Expressions
	4.6.14 All or Any Expressions
	4.6.15 Subqueries
	4.6.16 Functional Expressions
	4.6.16.1 String Functions
	4.6.16.2 Arithmetic Functions

	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Constructor Expressions in the SELECT Clause
	4.8.2 Null Values in the Query Result
	4.8.3 Aggregate Functions in the SELECT Clause
	4.8.4 Examples

	4.9 ORDER BY Clause
	4.10 Return Value Types
	4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

	4.11 Bulk Update and Delete Operations
	4.12 Null Values
	4.13 Equality and Comparison Semantics
	4.14 Restrictions
	4.15 Examples
	4.15.1 Simple Queries
	4.15.2 Queries with Relationships
	4.15.3 Queries Using Input Parameters

	4.16 EJB QL BNF

	Chapter 5 EntityManager
	5.1 Entity Managers
	5.2 Obtaining an EntityManager
	5.2.1 Obtaining a Container-managed Entity Manager
	5.2.2 Obtaining an Application-managed Entity Manager
	5.2.2.1 Obtaining an Entity Manager Factory in a J2EE Container
	5.2.2.2 Obtaining an Entity Manager Factory in a J2SE Environment
	5.2.2.3 The EntityManagerFactory Interface
	5.2.2.4 Control of the Application-Managed EntityManager Lifecycle.

	5.3 Controlling Transactions
	5.3.1 JTA EntityManagers
	5.3.2 Resource-local EntityManagers
	5.3.2.1 The EntityTransaction Interface

	5.4 Persistence Contexts
	5.4.1 Container-managed Persistence Contexts
	5.4.1.1 Container-managed Transaction-scoped Persistence Context
	5.4.1.2 Container-managed Extended Persistence Context

	5.4.2 Application-managed Persistence Contexts
	5.4.2.1 Application-managed Transaction-scoped Persistence Context
	5.4.2.2 Application-managed Extended Persistence Context

	5.4.3 Persistence Context Propagation
	5.4.3.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
	5.4.3.2 Persistence Context Propagation Rules for Extended Persistence Contexts

	5.5 Examples
	5.5.1 Container-managed Transaction-scoped Persistence Context
	5.5.2 Container-managed Extended Persistence Context
	5.5.3 Application-managed Transaction-scoped Persistence Context (JTA)
	5.5.4 Application-managed Extended Persistence Context(JTA)
	5.5.5 Application-managed Transaction-scoped Persistence Context (Resource Transaction)
	5.5.6 Application-managed Extended Persistence Context (Resource Transaction)

	5.6 Requirements on the Container
	5.6.1 Persistence Context Management
	5.6.2 Container Managed Persistence Contexts

	Chapter 6 Entity Packaging
	6.1 Persistence Unit
	6.2 Persistence Archive
	6.2.1 persistence.xml file
	6.2.1.1 name
	6.2.1.2 provider
	6.2.1.3 jta-data-source, non-jta-data-source
	6.2.1.4 mapping-file, jar-file, class
	6.2.1.5 properties
	6.2.1.6 Examples

	6.2.2 Default EntityManager

	6.3 Deployment

	Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping
	7.1 J2EE Container Deployment
	7.1.1 Responsibilities of the Container
	7.1.2 Responsibilities of the Persistence Provider
	7.1.3 javax.persistence.spi.PersistenceProvider
	7.1.4 javax.persistence.spi.PersistenceInfo Interface

	7.2 Bootstrapping in J2SE Environments

	Chapter 8 Metadata Annotations
	8.1 Entity
	8.2 Callback Annotations
	8.3 Annotations for Queries
	8.3.1 Flush Mode Annotation
	8.3.2 NamedQuery Annotation
	8.3.3 NamedNativeQuery Annotation
	8.3.4 Annotations for SQL Query Result Set Mappings

	8.4 References to EntityManager and EntityManagerFactory
	8.4.1 PersistenceContext Annotation
	8.4.2 PersistenceUnit Annotation

	Chapter 9 Metadata for Object/Relational Mapping
	9.1 Annotations for Object/Relational Mapping
	9.1.1 Table Annotation
	9.1.2 SecondaryTable Annotation
	9.1.3 SecondaryTables Annotation
	9.1.4 UniqueConstraint Annotation
	9.1.5 Column Annotation
	9.1.6 JoinColumn Annotation
	9.1.7 JoinColumns Annotation
	9.1.8 Id Annotation
	9.1.9 AttributeOverride Annotation
	9.1.10 AttributeOverrides Annotation
	9.1.11 EmbeddedId Annotation
	9.1.12 IdClass Annotation
	9.1.13 Transient Annotation
	9.1.14 Version Annotation
	9.1.15 Basic Annotation
	9.1.16 Lob Annotation
	9.1.17 ManyToOne Annotation
	9.1.18 OneToOne Annotation
	9.1.19 OneToMany Annotation
	9.1.20 JoinTable Annotation
	9.1.21 ManyToMany Annotation
	9.1.22 MapKey Annotation
	9.1.23 OrderBy Annotation
	9.1.24 Inheritance Annotation
	9.1.25 PrimaryKeyJoinColumn Annotation
	9.1.26 PrimaryKeyJoinColumns Annotation
	9.1.27 DiscriminatorColumn Annotation
	9.1.28 Embeddable Annotation
	9.1.29 Embedded Annotation
	9.1.30 EmbeddableSuperclass Annotation
	9.1.31 SequenceGenerator Annotation
	9.1.32 TableGenerator Annotation

	9.2 Examples of the Application of Annotations for Object/Relational Mapping
	9.2.1 Examples of Simple Mappings
	9.2.2 A More Complex Example

	Chapter 10 XML Descriptor
	10.1 XML Schema

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Changes Since EDR 2

