S
% sun

microsystems

Sun Microsystems

JSR 220: Enterprise JavaBeaffsVersion 3.0

Java Persistence API

EJB 3.0 Expert Group

Specification Lead:
Linda DeMichiel, Sun Microsystems

Please send comments to: ejb3-pdr-feedback@sun.com

Version 3.0, Public Draft
June 25, 2005




Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

Specification: JSR-220, Enterprise Java Beans ("Specification")
Version: 3.0

Status: Pre-FCS, Public Review

Release: June 27, 2005

Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED EVALUATION LICENSE

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without
the right to sublicense), under Sun's applicable intellectual property rights to view, download, use and
reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing ap-
plications intended to run on an implementation of the Specification, provided that such applications do
not themselves implement any portion(s) of the Specification, and (ii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that such ex-
cerpts do not in the aggregate constitute a significant portion of the Technology. No license of any kind
is granted hereunder for any other purpose including, for example, creating and distributing implemen-
tations of the Specification, modifying the Specification (other than to the extent of your fair use rights),

or distributing the Specification to third parties. Also, no right, title, or interest in or to any trademarks,
service marks, or trade names of Sun or Sun's licensors is granted hereunder. If you wish to create and
distribute an implementation of the Specification, a license for that purpose is available at http://
www.jcp.org. The foregoing license is expressly conditioned on your acting within its scope, and will
terminate immediately without notice from Sun if you breach the Agreement or act outside the scope of
the licenses granted above. Java, and Java-related logos, marks and names are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or im-
plement any portion of the Specification in any product. In addition, the Specification could include tech-
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, RELATED IN ANY WAY TO YOUR HAVING OR USING THE SPECIFICATION, EVEN IF
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

2 6/25/05



Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

RESTRICTED RIGHTS LEGEND

U.S. Government; If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sub-
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose.

GOVERNING LAW

Any action relating to or arising out of this Agreement will be governed by California law and controlling
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules
of any jurisdiction will not apply.

Rev. May 9 2005

3 6/25/05



Enterprise JavaBeans 3.0, Public Draft Sun Microsystems, Inc.

Acknowledgments

| would like to specially recognize Gavin King and the Hibernate community for their leadership in
achieving a developer-driven solution to the problem of object/relational persistence. | would like to
thank Gavin for bringing his energy, his experience, and his vision of a developer-centric persistence so-
lution to the EJB 3 effort, and for converging the Hibernate community in support of this work. Without
his many significant contributions, it would not have been possible for this work to be where it is today.

I would like to extend my thanks to Mike Keith for sharing with the expert group his extensive experience
with Oracle TopLink, for all his technical proposals to the group, and for his many other technical con-
tributions to the success of this specification.

4 6/25/05



Sun Microsystems, Inc.

Chapter 1

Chapter 2

Chapter 3

Enterprise JavaBeans 3.0, Public Draft

Table of Contents

INEFOTUCTION ...ttt et e et e e e st e e e e s smmmmcmmnn 13
1.1 EXPEIT GIOUP coeeeeiiiiiitiee ettt e e e e e s ettt e e e e e e s e e et e e e e e e e s e e e e eeeeas 13
1.2 DOCUMENE CONVENTIONS ....oeiitiieiiiieiiiee sttt et ee sttt et e s e e e snnee e e 13
ENEIES e+ —— 15
2.1 Requirements on the Entity ClasS.........cccvivieiiiiiiiiie e 15
2.1.1 Persistent Fields and Properties ..o 16
2.1.2 EXAMPIE o 18
2.1.3 Entity InStance Creation...........cccuuvueiiiiiiiiiaaiiiieeeee e 19
2.1.4 Primary Keys and Entity [dentity.............cccoiiiiiiiiiiiiieeeeeeenn 19
2.1.5 Embeddable ClasSes.........ccocieiiiiiiiiiiiiiiie et 20
2.1.6 Mapping Defaults for Non-Relationship Fields or Properties........... 20
2.1.7 Entity RelationShipS ....ccooeiiiiiiiieeiee e 20
2.1.8 Relationship Mapping Defaults.............coooiiiiiiiii e 22
2.1.8.1 Bidirectional OneToOne Relationships .............cccccvvieeennn. 22
2.1.8.2 Bidirectional ManyToOneOneToMany Relationships .... 23
2.1.8.3 Unidirectional Single-Valued Relationships....................... 24
2.1.8.3.1 Unidirectional OneToOne Relationships.............. 25
2.1.8.3.2 Unidirectional ManyToOne Relationships........... 26
2.1.8.4 Bidirectional ManyToMany Relationships......................... 27
2.1.8.5 Unidirectional Multi-Valued Relationships......................... 29
2.1.8.5.1 Unidirectional OneToMany Relationships........... 29
2.1.8.5.2 Unidirectional ManyToMany Relationships ........ 30
2.1.9 INNEIIANCE .. .ciiiiiiiie et 31
2.1.9.1 Abstract Entity ClaSSES ......cuuuiiiieaiiiiiiiiiiieeeee e 32
2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy..... 33
2.1.9.3 Embeddable Superclasses.........cccccuviiiiiiiiiiiiiiiiiiie e 33
2.1.10 Inheritance Mapping Strategi€S. ........cccuuiiiriuuriiiiiieiaee e 35
2.1.10.1 Single Table per Class Hierarchy Strategy .............ccceeernee 36
2.1.10.2 Table per Class Strategy .........ccccuruvreierriiieiee e 36
2.1.10.3 Joined Subclass Strategy..........ccoocveerrirrreeiiniieeee e 36
ENLity OPEIatiONS .....uveiiieiiiiiiie ettt e e e saba e e e e eaa 37...
TN 01114/ =T T T [ P ERRPRPR 37
3.1.1 EntityManager INterface...........ccuuuuiiiiiiiieeii e 38
3.1.2 Example of Use of EntityManager APl .........cccccoieiiiiiiiiiiiiiiieeeeeen, 41
3.2 Entity InStance’s Life CYCIe .......oooiiiieieee e 41
3.2.1 Persisting an Entity INSANCE .......cuvviiiiiiiiiiieii e 42
3.2.2 REMOVAI ...ciiiiiiiiiii e 42
3.2.3 Synchronization to the Database............cocceeiiiiiiie i 43
3.2.4 Detached ENItIES .....coovvieieiiiiiiee et 44
3.2.4.1 Merging Detached Entity State..........cccceeeeiviiiieeiniiieee e 44
3.2.5 Managed INSTANCES .......oiuviiiieiiiiie e 45
3.2.6 Transaction ROIDACK............ccooiiiiiiiiii e 45

5 6/25/05



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

3.3 PerSIStENCE CONIEXL.....cii ittt e e e e e e e e s e e s e e e e e e e e s e s e s nnneenneees 46
3.3.1 Extended Persistence CONEXL......cuvvveiiiiiiieeiiiiiie e 46
3.4 Entity Listeners and Callback Methods............ccccciiiiieeiiie e 46
3.4.1 Semantics of the Life Cycle Callback Methods for Entities.............. 48
4.2 EXAMPIE... e 49
78 TP OO U U U PP PP PP PUTPRRTTPRPIN ry...Que
API49
351 QUEIY INLEIACE.....ciiiiiiiiie e 50
3501 EXAMPIE eeeiiiiiiiiiiie e 52
3.5.2 Parameter NamIES. ... . oo e e e 53
3.5.3 NAMEd QUEIIES ....evuriiiiiiiieee e e e e ettt e e e s e r e e e e e e e e s e nnnnrneeeees 53
3.5.4 PolymorphiC QUETIES.......ccciiiiiiieeiiiiie ettt 53
3.5.5 SOQL QUEIES .....uueeiiiiiiiiieeee et e sttt eee et e e e e e e s s s s ereeeeee e e s s ennsnnsenneees 53
Chapter 4 (@ 1N 1=T Y I T oV [ T= Vo U EPR R 57.....
o R O 1YY 8V < T T 57
4.2 EJIB QL StatemMent TYPES .....uuviiiiiiieeeeeeiiiiitite ettt e e e e e 59
4.2.1 SeleCt StAtEMENES......ciieeeie e e s e e e aees 59
4.2.2 Update and Delete Statements...........ccccvvieeeeieeeeee i 59
4.3 Abstract Schema Types and Query DOMAINS ........cccceeveeeeeeeeiiiiiiiiiiineeeeeee e 60
o 70t R N =T 11 o [P RPPURUPPPRR 61
4.3.2 EXAMPI..ciiiiiiiii e 61
4.4 The FROM Clause and Navigational Declarations ............ccccoooeciiiiiiiiinnaaennn. 62
ot R 1o 1= o | 1T £ P 63
4.4.2 Identification Variables...........cccccveeee i 63
4.4.3 Range Variable Declarations ............ccccceeiiiiieeie i 64
A.4.4 Path EXPrESSIONS. ...ccciiiiiiiieiiiiiee e aiiiee e ettt ettt e st e e e e sbbee e e eeee 65
TN o] SRR 66
4.4.5.1 Inner Joins (Relationship JOINS).......ccccceeiiiiiiiiiiiiiiiee e, 66
4.4.5.2 Left OULEI JOINS....ccciieiiei it r e e e e 67
4.4.5.3 FetCh JOINS ..ccoii i 67
4.4.6 Collection Member Declarations ..........cccccveveeeeiiiiicciiiiieeeee e e 68
447 EJIBQL AN SQL...utiiiiiiiiiiie ettt 68
4.4.8 PolymorphiSm .......ccooiiiiiiiiiiii 69
45 WHERE CIAUSE .....cco ittt e e e e e s et e e e e e e e s s s s nnnnnenneeeneeeees 69
4.6 Conditional EXPreSSIONS ....cciiiieeeiii ittt e e e e e s e st r e e e e e e e s s e sannbe e eeeaeeeas 69
T T I 1 (=] = | =T 70
4.6.2 ldentification Variables..........ccuuiiiveiiiiie e 70
4.6.3 Path EXPreSSIONS. ....ccoi it ie ettt e et e e e e e e e 70
4.6.4 INPUE Parameters........uueieieiiiieae e 70
4.6.4.1 Positional Parameters.........cccuuveiieiiiieaiieiiiiieeee e 71
4.6.4.2 Named Parameters ..........ccoooiiiiiiiiiiiiieiieaee e 71
4.6.5 Conditional Expression COMPOSItiON.........ccoieeiiiiiiiiiiiiiiiiieieaae e 71
4.6.6 Operators and Operator PreCedence..........coooveuviiiiiieiieeeeeeeeiiieee 72
4.6.7 Between EXPreSSIONS. ... ... it 72
4.6.8 N EXPrESSIONS ..cooiiiiiiiiiiiitie ettt e e e e et ee e e e e e e e e e 73
4.6.9 Like EXPreSSIONS ...eeeiiiiiii i 74
6/25/05 6



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

4.6.10 Null Comparison EXPreSSiONS........coovuviiieiiiiiiie e 74
4.6.11 Empty Collection Comparison EXpressions .........cccccceeeevniieeeennennn. 74
4.6.12 Collection Member EXPressions .........oooveiieiiiiiie e 75
4.6.13 EXIiStS EXPIreSSIONS....cuviiiieiiiiiie ettt 75
4.6.14 All OF ANY EXPIrESSIONS ...couvviiiieiiiiiiee ettt e sttt s 76
4.6.15 SUDQUEIIES ...ooiiiiiiiie ittt s 76
4.6.16 Functional EXPreSSIONS ..........eeiiiiiiiiiieiiiiiee e 77
4.6.16.1 String FUNCHONS........cciiiiiiiiieiiiiie e 77
4.6.16.2 Arithmetic FUNCHONS .......ccvvviiiiiiiiee e 78
4.7 GROUP BY, HAVING ...ttt ettt e e sneeeenneeas 79
4.8 SELECT ClaUSE.....ciiiiiieiiiiiesiiee ettt e e snne e sneeenn 79
4.8.1 Constructor Expressions in the SELECT Clause............ccccoocvvveeenns 81
4.8.2 Null Values in the Query ResUIL...........occciiiiiiiiiiiee e 81
4.8.3 Aggregate Functions in the SELECT Clause..........cccoeveevnivieeeennnnnn. 81
4.8.4 EXAMPIES ...oiiiiiiiiiiie ittt 82
4.9 ORDER BY ClAUSE ....cciiiiiiiiiiii ettt ettt st e sbae e st e snae e snbee e 83
4.10 RELUIN ValUE TYPES .. uuuiiiiiiiiiiiee e e e e ieeiiieit et e e e e e e s s s st eeeeeeeeeessnnsnnbananeeeeeaees 84
4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans...... 84
4.11 Bulk Update and Delete Operations...........cccccuviiiiieieeeeeeiicccciiireee e e e e e e e e 86
A.12 NUITVAIUEBS ... e e et e e e e 87
4.13 Equality and CompariSon SEMANLICS.......c.uuviieiiiiiiiee it 88
R = LY 1 Tt ([0 ] 4 SR 89
415 EXAMPIES ..ottt ettt e e e e e e e r e e e e e e e e e e aaan 89
4.15.1 SIMPIE QUETIES .. .eeeiieiiitiie ettt 89
4.15.2 Queries with Relationships ..........coooiiiiiiii e 89
4.15.3 Queries Using INput Parameters...........ccooviiiieeeiiiiieee e 91
4.16 EJIB QL BNF ..ottt sttt st st e st ne e et e e e neee e 91
Chapter 5 ENEYMBNAGET . .....ciiiiiiiiie ettt e e s neeeeaas a5..
5.1 ENLItY MANAGETS. .....etiiieeiiiiiee ettt ettt ettt e s b e e e 95
5.2 Obtaining an ENtityManager .........cceceeiiiiiiiiiiiiiieeeeee e ececiirrrre e e e e e e e e saeneeees 96
5.2.1 Obtaining a Container-managed Entity Manager ................cccccuuueeee. 96
5.2.2 Obtaining an Application-managed Entity Manager ........................ 96

5.2.2.1 Obtaining an Entity Manager Factory in a J2EE Container 97
5.2.2.2 Obtaining an Entity Manager Factory in a J2SE Environment97
5.2.2.3 The EntityManagerFactory Interface.............cccocveveeeeneeenn. 98
5.2.2.4 Control of the Application-Managed EntityManager Lifecycle.99

5.3 Controlling TranSACHONS ........cccueiiiiiiiiie et e e e e e e e e e nas 100
5.3.1 JTA ENtityMaANAQEIS. ....coiiiiiiiiie ittt ettt 100
5.3.2 Resource-local EntityManagers .........ccoocvveeeeiiiieieeiniiieee e 100
5.3.2.1 The EntityTransaction Interface ...........ccccccevviieeiiiiiiieenens 101
L S ) (=T ol O 0] o] () £ 101
5.4.1 Container-managed Persistence Contexts...........ccccceeeeeeeeeeieiicvnnnnn 101
5.4.1.1 Container-managed Transaction-scoped Persistence Context102
5.4.1.2 Container-managed Extended Persistence Context............ 102
5.4.2 Application-managed Persistence CONtextS......ccccccveeeeeeviiiiivrnveennenn. 102

7 6/25/05



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

5.4.2.1 Application-managed Transaction-scoped Persistence Context102
5.4.2.2 Application-managed Extended Persistence Context......... 103
5.4.3 Persistence Context Propagation ............ccceeeevriiieeeeiiiieeeeeniieee e 103
5.4.3.1 Persistence Context Propagation for Transaction-scoped Persis-
tence Contexts103
5.4.3.2 Persistence Context Propagation Rules for Extended Persistence

Contexts104
5.5 EXAIMPIES ittt 105
5.5.1 Container-managed Transaction-scoped Persistence Context........... 105
5.5.2 Container-managed Extended Persistence Context..........ccccccceeeeennee 106
5.5.3 Application-managed Transaction-scoped Persistence Context (JTA)107
5.5.4 Application-managed Extended Persistence Context(JTA) .............. 108
5.5.5 Application-managed Transaction-scoped Persistence Context (Resource
Transaction)109
5.5.6 A%plication—managed Extended Persistence Context (Resource Transaction)
11
5.6 Requirements on the CONAINET .........coooiiiiiiiiiiiiiiee e 111
5.6.1 Persistence Context Management ..........cceeveeeeeeiiiiiiiiiiiieeeeeeeeessesniienns 111
5.6.2 Container Managed Persistence ConNtextS.......ccccceeeeveiviiciviiiineeeeeeennn, 111
Chapter 6 ENtity PACKAGING ...ttt e e e e e e e 113.
6.1 PersiSteNCe UNIl......c.ueiiiiiiiiiiieiiiee et 113
6.2 PersiStenCe ArCHIVE........cciiiiiie it 114
6.2.1 persistence. XMl file.......oooooiiiii e 114
B.2.1. 1 NAIME ittt s 115
B.2.1.2  PrOVIAEN ...t 115
6.2.1.3 jta-data-source, non-jta-data-SoOUrce.........cc.ccceeveviuvrrreenenn. 115
6.2.1.4 mapping-file, jar-file, ClasS.........coooviiiiiii e 115
B.2.1.5  PrOPEITIES. ..eeiiieeeeei ittt 116
6.2.1.6 EXAMPIES. .ot 116
6.2.2 Default ENtityMaNAgET ........ocuviieiiiiiiiee et 118
6.3 DEPIOYMENT. ...ttt 118
Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping ............c.cceeevuveen. 119
7.1 J2EE Container DeploYMENT .......coiiiiiiiiiiiiiieeie et 119
7.1.1 Responsibilities of the Container .........c.c.occueeeeiiiiiiee e 119
7.1.2 Responsibilities of the Persistence Provider ..........ccccoceeiviiieieennne 120
7.1.3 javax.persistence.spi.PersistenceProvider .........cccccccvviiieeeniiiiennnns 121
7.1.4 javax.persistence.spi.Persistencelnfo Interface ...........cccccovvciiiinnnnn 122
7.2 Bootstrapping in J2SE ENVIFONMENTS .......evviiiiiiiiiiie it 123
Chapter 8 Metadata ANNOLALIONS .......ooiiieiii e e e e e e e e e 125......
S0 A = 01 11 PP PP PTPPRT P 125
8.2 Callback ANNOLALIONS.......ccoiiieiiiiieirie et nn e 126
8.3  AnNotations fOr QUEIIES......cccoiii i 127
8.3.1 Flush Mode ANNOTALION..........ccocuiiiiiiiiciii e 127

6/25/05 8



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

8.3.2 NamedQuery ANNOLAtiON ........cccuvviiiiiiieiee e 127
8.3.3 NamedNativeQuery ANNOtatioN..........cccovvviiviiiiiiriere e 128
8.3.4 Annotations for SQL Query Result Set Mappings.............ccecvvvvveneen. 128
8.4 References to EntityManager and EntityManagerFactory ...........cccccccveveeeen.n. 129
8.4.1 PersistenceContext ANNOLALION ........cceeeeiiiiiiiiiiiiceeeeeeee e 129
8.4.2 PersistenceUnit ANNOLALION. ... ..uuuureiiiiiieieieieieeeeeeeeeeeeeee e, 130
Chapter 9 Metadata for Object/Relational Mapping ..........cceeiriiiieeiiiiieeeiee e 131
9.1 Annotations for Object/Relational Mapping .........ccccceceeeieeecvrnineerieeeeesissieinnns 131
9.1.1 Table ANNOTALION .....uuieii i e 132
9.1.2 SecondaryTable ANNotation............ccccvveeiieeeee e 133
9.1.3 SecondaryTables AnNNOtation .........ccccccceeeeeiiiiiiiiiiieieee e 134
9.1.4 UniqueConstraint ANNOtAtioN .............cooviiiiiiiiiiieee e 134
9.1.5 Column ANNOTALION .....uvvuriiiiiieeiiieiee e 135
9.1.6  JoiNColumn ANNOALION ......cccvvvviiriiiiiiiiiieieieieee e e e e eeeeeeeeeeeeeeeeeeeaeaerann 136
9.1.7 JoinColumns ANNOLALION..........ccvvrrviriiiiiiiiiieie e ie e eeeeeeeeeeeeeeeeeeeeeeanns 138
£© TN 08 T [0 [N o T To ] = 11 o] o [P 139
9.1.9 AttributeOverride ANNOLAtION ........ccoeeeeiiiiiiiiiiieeeeee 140
9.1.10 AttributeOverrides ANNOtAtiON..........cceeeeeeieeiiiiiiiieeeeeeeeeenn 140
9.1.11 Embeddedld ANNOLAtioN ..........cccoeviiiiiiiiiiieieee e 141
9.1.12 1dCIlass ANNOLALION..............coiviiiieieiiiirii s e e e e e e e e e aeaeeeereeaeeens 141
9.1.13 Transient ANNOLALION.........ccoeiiiiiiiiiieeeeeeee e 141
9.1.14 Version ANNOLALION ......uueeieieiiiiiieeeeeeeeeeeeeeeeeeeeee e 142
9.1.15 BaSiC ANNOLALION .....ccciiiiiiiiiiiieeeeeceeee e e e e e e e e 142
Lo T 00 S T o | o I g [ g T ] 7= i [0 ISR 144
9.1.17 ManyToOne ANNOLAtION.........cccuurieiiieeee e e e 145
9.1.18 ONETOONE ANNOLALION .......cevviieeeeirieiiri e e e e e e e e e e e e e eeeeereeaeeens 146
9.1.19 OneToMany ANNOLALION..........ccuurieeiieeee e e e 148
9.1.20 JoinTable ANNOTALION .....uuueeeiiiiieiieieieieeeeeeeeeeeeeeeeeeeee s 149
9.1.21 ManyToMany ANNOLAtION .........uueieiieeeeeeiiiiiiiniieee e e e e e e e e s e snerrreeeee s 150
9.1.22 MapKey ANNOLALION .......cciiieeeeiiiiiiiiiee e e e 151
9.1.23 OrderBy ANNOLatioN...........ccccuviiiiiiiiee e 153
9.1.24 Inheritance ANNOLALION ........ciiiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 153
9.1.25 PrimaryKeyJoinColumn Annotation.............ccccccvvvieeeeeeeeeecee e 155
9.1.26 PrimaryKeyJoinColumns Annotation ...........ccccceeveeeeeeeeicicciinneeeee. 156
9.1.27 DiscriminatorColumn ANNOLALiON.........vuveriiiiieieiieieeeeeeeeeeeeeeeeeeveeaenns 157
9.1.28 Embeddable ANNOatioN............coooiiiiiiiiiieeeer e 158
9.1.29 Embedded ANNOLALION............covvvvriiriiiiiiiiieie e ieeeeee e e eeeeeeee e eeeeeeeraannns 159
9.1.30 EmbeddableSuperclass ANNOtatioN............cceveeeiiiiiiiiiiiiiieeeeeeeee s 159
9.1.31 SequenceGenerator ANNOAtION ............cocciiiiiiiiieeiee e 159
9.1.32 TableGenerator ANNOLALION .......coeieieiiiiiieeeeeeeeeeeeeeeeeeeeeeev e 160
9.2 Examples of the Application of Annotations for Object/Relational Mapping 163
9.2.1 Examples of Simple Mappings .........ccceeeeriimimieeiniiieee e 163
9.2.2 A More Complex EXamPpPle ... 166
Chapter 10 XML DESCIIPION ...ttt ettt et e st e e e et e e e e e rnes 171
10.1 XML SCREMAL.....cciiiiiiieeeeeeee ettt 171

9 6/25/05



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

Chapter 11 Related DOCUMENTS .......iiiiiiiiiiie ittt st e e saeb e e 185.....
Appendix A REVISION HISTOIY ..ottt e e e e 187
AL EArlY Draft L....oeeeeiiiieiie e 187
A2 EArlY DIaft 2 ...t a e e e e e e naes 187
A.3 Changes SiNCE EDR 2........ooiiiiiiiiiiiiie et 188

6/25/05 10



Sun Microsystems, Inc.

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22

Enterprise JavaBeans 3.0, Public Draft

List of Tables
Definition of the AND OPEIALON.........cccciiiiiiiiie e e e e e e e e e e e e e e e e e e s e eeeesmnnnesreees 87
Definition of the OR OPerator.............uuieiiiiiieaaie e
Definition of the NOT Operator
Table ANNotation EIEMENES ... e et e e e e s nnmmmmane e s
SecondaryTable ANNotation EIEMENTS ... e 133
UniqueConstraint ANNotation EIEMENTS...........coiiiiiiiii e s 135
Column Annotation Elements
JoinColumn ANNOotation EIEMENLS ......ccooiiii i e s s —— 137
Id ANNOLAtION EIEMENTS....uuiitiicccc e e e e e e e ee e 139
AttributeOverride AnNNotation EIEBMENLS ..........ccciiiiiiiiiice e mmmmmeneeees 140
Basic ANNOtationN EIEMENTS ..........uiiiiiiiiciii e s smmmmmmmmmmm———— e 143
LODANNOLALION EIEMENTS......oiiiiiiiiccceie e s e s e e e e e e e aeaaeeeeeeeeesereres 145

ManyToOne Annotation EIEMENTS............ocoviiiiiiiiiiiie e ssnee e s s LA O
ONeToONe ANNOLALION EIBMENTS.......ciiiii i e e e e e e e e e e aeaeeeens
OneToMany Annotation EIEMENTS ........ccueiiiiiiiiiie e .
JoinTable ANNOtAtioN ElEMENLES.........uuiiiiiiieie e e e e e e s ——
Inheritance AnNNotation EIEMENTS ............uviiiiiiiiiiii e s« LOZ

PrimaryKeyJoinColumn AnNNotation EIEMENTS ...........uiiiiiiiiiiiiiee e e 155..
DiscriminatorColumn Annotation EIEMENTS............oooiiiiiiiiiiiie e 158
Embeddable Annotation EIEMENES ........uuuiiiiiii i e 158
SequenceGenerator ANNOtation EIEMENTS..........cviiiiiiiiii e 160
TableGenerator AnNnotation EIEMENES .........cccuviiiiiiiiii e smmmmmmmmmnees 161

11 6/25/05



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

6/25/05 12



Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Public Draft

amers INtroduction

This document is the specification of the Java API for the management of persistence and object/rela-
tional mapping with J2EE and J2SE.

This persistence APl—together with the query language and object/relational mapping metadata
defined in this document—is required to be supported under Enterprise JavaBeans 3.0. It is also tar-
geted at being used stand-alone with J2SE.

Leading experts throughout the entire Java community have come together to build this Java persistence

standard. This work incorporates contributions from the Hibernate, TopLink, and JDO communities, as
well as from the EJB community.

1.1 Expert Group

This work is being conducted as part of JSR-220 under the Java Community Process Program. This
specification is the result of the collaborative work of the members of the JSR 220 Expert Group. These
include the following present and former expert group members: Apache Software Foundation: Jeremy
Boynes; BEA: Seth White; Borland: Jishnu Mitra; E.piphany: Karthik Kothandaraman; Fujitsu-Sie-
mens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson, Randy Schnier; IONA: Conrad
O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc Fleury; Macromedia: Hemant
Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle: Michael Keith, Debu Panda, Oliv-

ier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit Yalcinalp; SAS Institute: Rob Sac-
coccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun Microsystems: Linda DeMichiel,
Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi; Tmax Soft: Woo Jin Kim; Versant:
David Tinker; Xcalia: Eric Samson; Reza Behforooz; Emmanuel Bernard; Wes Biggs; David Blevins;
Scott Crawford; Geoff Hendrey; Oliver Ihns; Oliver Kamps; Richard Monson-Haefel; Dirk Reinshagen;
Carl Rosenberger; Suneet Shah.

1.2 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

The Helvetica font is used to specify the BNF of EJB QL.

13 6/25/05



Sun Microsystems, Inc.

Introduction

Enterprise JavaBeans 3.0, Public Draft Document Conventions

This document is written in terms of the use of Java language metadata annotations to specify the
semantics of persistent classes and their object/relational mapping. An XML descriptor (as specified in
Chapter 10) may be used as an alternative to annotations. The elements of this descriptor mirror the
annotations and have the same semantics.

6/25/05

14



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Chapter 2

2.1

Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

Requirements on the Entity Class

The entity class must be annotated with Brgity = annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement tiserializable interface.

The entity class must not be final. No methods of the entity class may be final.

15 6/25/05



Sun Microsystems, Inc.

Entities

2.1.1

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Entities support inheritance, polymorphic associations, and polymorphic queries. Both abstract and con-
crete classes can be entities. Entities may extend non-entity classes as well as entity classes, and
non-entity classes may extend entity classes.

The state of an entity is represented by instance variables, which may correspond to JavaBeans proper-
ties. An instance variable may be directly accessed only from within the methods of the entity by the
entity instance itself. Instance variables must not be accessed by clients of the entity. The state of the
entity is available to clients only through the entity’s accessor methods (getter/setter methods) or other
business methods. Instance variables must be private, protected, or package visibility.

Persistent Fields and Poperties

The persistent state of an entity is accessed by the persistence provider Wreither via JavaBeans
style property accessors or via instance variables.

* If the entity is annotated with the annotation element valceess=FIELD , the persistence
provider runtime accesses instance variables directly and altraasient instance vari-
ables that are not annotated with Tvansient ~ annotation are persistent.

* If the entity is annotated with the annotation element valoeess=PROPERTY, or if the
access annotation element value is not specified, the persistence provider runtime accesses
persistent state via the property accessor methods and all properties not annotated with the
Transient  annotation are persistent. The property accessor methods must be public or pro-
tected.

* When theFIELD access type is used, the object/relational mapping annotations for the entity
class annotate the instance variables. When PROPERTYaccess type is used, the
obje[czt]/relational mapping annotations for the entity class annotate the getter property acces-
sorst

It is required that the entity class follow the method conventions for a JavaBean when persistent proper-
ties are used.

In this case, for every persistent propeptppertyof type T of the entity, there is a getter methaykt-
Property and setter methosletProperty For boolean propertiegsPropertyis an alternative name for
the getter method.

For single-valued persistent properties, these method signatures are:

* T getProperty()

* void setProperty(T t)

(1]
[2]

The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In EJB environ
ments, this may be the EJB container or a third-party persistence implementation integrated with it.

Note that the order in which the persistence provider runtime calls these methods when loading or storing persisteat state i
defined. Business logic contained in such methods therefore cannot rely upon a specific invocation order.

6/25/05

16



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Collection-valued persistent fields and properties must be defined in tefansaaitil. Collec-

tion interfaces regardless of whether the entity class otherwise adheres to the JavaBeans conventions
noted above. The following collection interfaces are supporfeda.util.Collection ,
java.util.Set , java.util.List (31 java.util.Map

For collection-valued persistent properties, tfipamust be one of these Collection interface types in the
method signatures above. Generic variants of these Collection types may also be used (for example,
Set<Order> ).

In addition to returning and setting the persistent state of the instance, the property accessor methods
may contain other business logic as well, for example, to perform validation.

Note that the persistence runtime executes this validation logic when the acce&Ri@pe
ERTYis specified or defaulted. Caution should be exercised in adding business logic to the
accessor methods when tRBOPERTYaccess type is used.

Runtime exceptions thrown by property accessor methods will cause the current transaction to be rolled

back. Application exceptions thrown by such methods when used by the persistence runtime to load or

store persistent state will cause the persistence runtime to rollback the transaction and to throw a Persis-
tenceException that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications must not
override the object/relational mapping metadata that applies to the persistent fields or properties of
entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive types;

java.lang.String ; other Java serializable types (including wrappers of the primitive types,
java.math.Biginteger , java.math.BigDecimal , java.util.Date ,
java.util.Calendar (4l java.sgl.Date , java.sgl.Time , Jjava.sgl.Timestamp ,
user-defined serializable typdsyte[] , Byte[] , char[] , and Character][]) ; enums; entity

types and/or collections of entity types; and embeddable classes (see section 2.1.5).

Object/relational mapping metadata may be specified to customize the object-relational mapping, and
the loading and storing of the entity state and relationships. See Chapter 9.

[3] Portable applications should not expect the order of lists to be maintained across persistence contexts@Qessriye con-
struct is used and modications to the list observe the specified ordering.

[4] Note that an instance must of Calendar must be fully initialized for the type that it is mapped to.

17 6/25/05



Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Public Draft

2.1.2 Example

@Entity
public class Customer implements Serializable {

private Long id;

private String name;

private Address address;

private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

/I No-arg constructor
public Customer() {}

@Id
public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@OneToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones() {
return phones;

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

Requirements on the Entity Class

6/25/05

18



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

2.13

/I Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);
/I Set the phone’s ref to this customer
phone.setCustomer(this);

Entity Instance Creation

214

Entity instances are created by means ofriees operation. An entity instance, when first created by
new is not yet persistent. An instance becomes persistent by meanskrftihgManager  API. The
lifecycle of entity instances is described in Section 3.2.

Primary K eys and Entity Identity

Every entity must have a primary key.

A simple (i.e., non-composite) primary key must correspond to a single persistent field or property of
the entity class. A composite primary key must correspond to either a single persistent field or property
or to a set of such fields or properties as described below. A primary key class must be defined to repre-
sent a composite primary key. Composite primary keys typically arise when mapping from legacy data-
bases when the database key is comprised of several columns.

The primary key (or field or property of a composite primary key) must be one of the following types:
any Java primitive type; any primitive wrapper tygayva.lang.String ; java.util.Date ;
java.sgl.Date . In general, however, approximate numeric types (e.qg., floating point types) should
never be used in primary keys.
Both field and property access is allowed for primary key classes, as for entity classes.
The following rules apply for composite primary keys.

* The primary key class must be public and must have a public no-arg constructor.

* If access=PROPERTY, the properties of the primary key class must be public or protected.

* The primary key class must be serializable.

* The primary key class must defiequals andhashCode methods. The semantics of value

equality for these methods must be consistent with the database equality for the database types

to which the key is mapped.

* A composite primary key may either be represented and mapped as an embeddable class or
may be represented and mapped to multiple fields or properties of the entity class.

* If the composite primary key class is mapped to multiple fields or properties of the entity class,
then the names of primary key fields or properties in the primary key class and those of the

19 6/25/05



Sun Microsystems, Inc.

Entities

2.1.5

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

entity class must correspond and their types must be the same. It is permitted for the entity
class and the primary key class to use different access BREPERTYr FIELD).

* The application must not change the value of the primary key. The behavior is undefined if this

occurs!

Embeddable Classes

2.1.6

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances themselves, do not have persistent identity. Instead, they exist only as embedded objects
of the entity to which they belong. Such embedded objects belong strictly to their owning entity, and are
not sharable across persistent entities. Attempting to share an embedded object across entities has unde-
fined semantics. Because these objects have no persistent identity, they are typically mapped together
with the entity instance to which they beldfl.

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the excep-
tion that embeddable classes are not annotatedtéy

Mapping Defaults for Non-Relationship Fields or Poperties

2.1.7

If a persistent field or property other than a relationship property is not annotated with one of the map-
ping annotations defined in Chapter 9 (or equivalent mapping information is not specified in the XML
descriptor), the following default mapping rules are applied in order:

* If the type is a class that is annotated with {@Embeddable annotation, it is mapped as
@Embedded

* Ifthe type of the field or property is one of the following, it is mapped@®asic : Java prim-
itive types, wrappers of the primitive typgaya.lang.String , java.math.BigIn-
teger , java.math.BigDecimal , java.util.Date , java.util.Calendar ,
java.sgl.Date , java.sql.Time , java.sgl.Timestamp , byte[] , Byte[] ,
char[] ,Character[] , enums, any other type that implements Serializable.

It is an error if no annotation is present and none of the above rules apply.

Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Rela-
tionships are polymorphic.

(5]
(6]

The implementation may, but is not required to, throw an exception if this occurs.

Support for collections of embedded objects and for the polymorphism and inheritance of embeddable classes will be required in
a future release of this specification.

6/25/05

20



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or instance variable of the referencing entity:
OneToOne, OneToMany, ManyToOne, ManyToMany. For associations that do not specify the tar-

get type (e.g., where Java generic types are not used for collections), it is necessary to specify the entity
that is the target of the relationship.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the rela-

tional database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.1.8, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse side. A unidirectional relationship has only an owning side. The owning side of a
relationship determines the updates to the relationship in the database, as described in section 3.2.3.

The following rules apply to bidirectional relationships:

* The inverse side of a bidirectional relationship must refer to its owning side by use of the
mappedBy element of theOneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the rela-
tionship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning
side, hence thmappedBy element cannot be specified on ki@nyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that con-
tains the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use ofaskeade=REMOVEspecification. The
cascade=REMOVE specification should only be applied to associations that are specifi€hes
ToOne or OneToMany. Applications that applgascade=REMOVEto other associations are not por-
table.

Additional mapping annotations (e.g., column and table mapping annotations) may be specified to over-
ride or further refine the default mappings described in Section 2.1.8. For example, a foreign key map-
ping may be used for a unidirectional one-to-many mapping. Any such overriding must be consistent
with the relationship modeling annotation that is specified. For example, if a many-to-one relationship
mapping is specified, it is not permitted to specify a unique key constraint on the foreign key for the
relationship. Such schema-level mapping annotations must be specified on the owning side of the rela-
tionship.

The persistence provider handles the object-relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

21 6/25/05



Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

2.1.8 Relationship Mapping Defaults

This section describes the mapping defaults that apply to the use @nb&oOne, OneToMany,
ManyToOne, andManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

2.1.8.1 Bidirectional OneToOne Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a single instance of Entity A.
Entity A is specified as the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private Cubicle assignedCubicle;

@0OneToOne
public Cubicle getAssignedCubicle() {
return assignedCubicle;

}
public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
return residentEmployee;

}
public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

6/25/05 22



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

In this example:

Entity Employee references a single instance of EnGybicle
Entity Cubicle references a single instance of EnEiyployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity Cubicle is mapped to a table namétBICLE

TableEMPLOYE[Eontains a foreign key to tab@UBICLE. The foreign key column is named
ASSIGNEDCUBICLE<PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of tablEUBICLE. The foreign key column has the same type as the
primary key ofCUBICLE, and there is a unique key constraint on it.

2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.
The following mapping defaults apply:

Entity A is mapped to a table namad

Entity B is mapped to a table namid

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tableB.

23 6/25/05



Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Example:

@Entity
public class Employee {
private Department department;

@ManyToOne
public Department getDepartment() {
return department;

public void setDepartment(Department department) {
this.department = department;

@Entity
public class Department {
private Collection<Employee> employees = new HashSet();

@OneToMany(mappedBy="department")
public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

In this example:

Entity Employee references a single instance of Enbigpartment .
Entity Department references a collection of EntiBmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity Department is mapped to a table namB&PARTMENT

Table EMPLOYEEontains a foreign key to tablBEPARTMENTT he foreign key column is
namedDEPARTMENTKPK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of taid=PARTMENT he foreign key column has the
same type as the primary keyEPARTMENT

2.1.8.3 Unidirectional Single-Valued Relationships
Assuming that:

Entity A references a single instance of Entity B.

6/25/05 24



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

2.18.31

Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOneor as a unidirection&flany ToOne relationship.

Unidirectional OneToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private TravelProfile profile;

@OneToOne
public TravelProfile getProfile() {
return profile;

public void setProfile(TravelProfile profile) {
this.profile = profile;

@Entity
public class TravelProfile {

}

In this example:

Entity Employee references a single instance of EnfitavelProfile
Entity TravelProfile does not reference Entimployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity TravelProfile is mapped to a table naméRAVELPROFILE

25 6/25/05



Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

TableEMPLOYEI[Eontains a foreign key to tablERAVELPROFILE The foreign key column

is named PROFILE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of taliRAVELPROFILE The foreign key col-

umn has the same type as the primary key BAVELPROFILE and there is a unique key
constraint on it.

2.1.8.3.2 Unidirectional ManyToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tableB.

Example:

@Entity
public class Employee {
private Address address;

@ManyToOne
public Address getAddress() {
return address;

}
public void setAddress(Address address) {
this.address = address;

}
=

@Entity
public class Address {

}

In this example:

Entity Employee references a single instance of Enfigdress .
Entity Address does not reference EntiBmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Address is mapped to a table nama®DRESS

TableEMPLOYEEontains a foreign key to tablEDDRESSThe foreign key column is named
ADDRESS<PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary

6/25/05

26



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

key column of tableADDRESSThe foreign key column has the same type as the primary key
of ADDRESS

2.1.8.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B references a collection of Entity A.
Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namigd

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity BY;"the name of the primary key col-
umn in tableA. The other foreign key column refers to taBl@and has the same type as the pri-
mary key of tableB. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A';"the name of the pri-
mary key column in tablB.

27 6/25/05



Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Public Draft

Example:

@Entity
public class Project {
private Collection<Employee> employees;

@ManyToMany
public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

@Entity

public class Employee {
private Collection<Project> projects;
@ManyToMany(mappedBy="employees")

public Collection<Project> getProjects() {
return projects;

public void setProjects(Collection<Project> projects) {
this.projects = projects;

In this example:

Entity Project  references a collection of EntiBmployee .

Entity Employee references a collection of EntiBroject
Entity Project  is the owner of the relationship.

The following mapping defaults apply:

Entity Project  is mapped to a table namB&OJECT
Entity Employee is mapped to a table nameEMPLOYEE

Requirements on the Entity Class

There is a join table that is nam&ROJECT_EMPLOYEHKowner name first). This join table
has two foreign key columns. One foreign key column refers to tBRR®JECTand has the
same type as the primary key #fROJECT The name of this foreign key column is
PROJECTS<PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary
key column of tabld®PROJECT The other foreign key column refers to tali®PLOYERnd

has the same type as the primary keyebiPLOYEEThe name of this foreign key column is
EMPLOYEESPK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the

primary key column of tablEMPLOYEE

6/25/05 28



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft

2.1.85

2.1.851

Unidirectional Multi-Valued Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B does not reference Entity A.

Entities

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional

OneToMany or as a unidirectiondlanyToMany relationship.
Unidirectional OneToMany Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; ""; the name of the primary key column in tab% The other foreign

key column refers to tablB and has the same type as the primary key of t8dad there is a
unique key constraint on it. The name of this foreign key column is formed as the concatena-
tion of the following: the name of the relationship property or field of entity A};'the name

of the primary key column in tabk
Example:

@Entity
public class Employee {
private Collection<AnnualReview> annualReviews;

@OneToMany
public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualRe-
views) {

this.annualReviews = annualReviews;

}
}
@Entity
public class AnnualReview {
}

In this example:

29

6/25/05



Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

Entity Employee references a collection of EntijnnualReview .
Entity AnnualReview does not reference EntiBmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity AnnualReview is mapped to a table namAdINUALREVIEW

There is a join table that is nam&MPLOYEE_ANNUALREVIEbwner name first). This
join table has two foreign key columns. One foreign key column refers to &lBLOYEE
and has the same type as the primary ke BfPLOYEEThis foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tablEMPLOYEEThe other foreign key column refers to taBlBINUAL-
REVIEWand has the same type as the primary keYADBMNUALREVIEWThis foreign key
column is namedANNUALREVIEWSPK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of tadMNUALREVIEWT here

is a unique key constraint on the foreign key that refers to A@iNMJALREVIEW

2.1.8.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namBd

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entityy; " _"; the name of the primary key column in tabe The other foreign

key column refers to tablB and has the same type as the primary key of t&8blehe name of

this foreign key column is formed as the concatenation of the following: the name of the rela-

tionship property or field of entit); "_"; the name of the primary key column in taBle

6/25/05

30



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

Example:

@Entity
public class Employee {
private Collection<Patent> patents;

@ManyToMany
public Collection<Patent> getPatents() {
return patents;

public void setPatents(Collection<Patent> patents) {
this.patents = patents;

@Entity
public class Patent {

}

In this example:

Entity Employee references a collection of EntilBatent .
Entity Patent does not reference Entigmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Patent is mapped to a table namEATENT

There is a join table that is nam&MPLOYEE_PATENTowner name first). This join table
has two foreign key columns. One foreign key column refers to taM®LOYERNd has the
same type as the primary key d&EMPLOYEE This foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tabl&EMPLOYEEThe other foreign key column refers to tatHATENT
and has the same type as the primary keyPATENT This foreign key column is named
PATENTS <PK of PATENT>, where <PK of PATENT> denotes the name of the primary key
column of tablePATENT

2.1.9 Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes may be annotated
with theEntity — annotation, mapped as entities, and queried for as entities.

Entities may extend non-entity classes and non-entity classes may extend entity classes.

31 6/25/05



Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

When an entity is defined as a subclass of another entity, the primary keys of the entities must be of the
same type.

These concepts are described further in the following sections.

2.1.9.1 Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with fatity  annotation or denoted in the XML descriptor as
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.
Example: Abstract class as an Entity

@Entity(access=FIELD)
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {
@Id protected Integer empld;
@Version protected Integer version;
@ManyToOne protected Address address;

@Entity

@Table(name="FT_EMP")
@Inheritance(discriminatorValue="FT")
@PrimaryKeyJoinColumn(name="FT_EMPID")
public class FullTimeEmployee extends Employee {

Il Inherit empld, but mapped in this class to FT_EMP.FT_EMPID
I Inherit version mapped to EMP.VERSION
/I Inherit address mapped to EMP.ADDRESS fk

private Integer salary;
// Defaults to FT_EMP.SALARY
public Integer getSalary() { return salary; }

@Entity(access=FIELD)
@Table(name="PT_EMP")
@Inheritance(discriminatorValue="PT")
/I PK field is PT_EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

6/25/05

32



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy
An entity may have a non-entity superclass, which may be either a concrete or abstract class.

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting entity

class. This non-persistent state is not managed by the EntityManager, nor it is required to be retained
across transactions.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query interfaces
and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.
Example: Non-entity superclass

public class Cart {

/I This state is transient
Integer operationCount;

public Cart() { operationCount = 0; }
public Integer getOperationCount() { return operationCount; }
public void incrementOperationCount() { operationCount++; }

}

@Entity
public class ShoppingCart extends Cart {

Collection<ltem> items = new Vector<Item>();
public ShoppingCart() { super(); }

@OneToMany
public Collection<Item> getltems() { return items; }
public void addltem(ltem item) {

items.add(item);

incrementOperationCount();

2.1.9.3 Embeddable Superclasses
An entity may have an embeddable superclass, which provides persistent entity state and mapping infor-
mation, but which is not itself an entity. Typically, the purpose of an embeddable superclass is to define
state and mapping information that is common to multiple entity classes.

An embeddable superclass, unlike an entity, is not queryable and cannot be passed as an argument to
EntityManager or Query operations. An embeddable superclass cannot be the target of a persistent rela-
tionship.

Both abstract or concrete classes may be specified as embeddable superclassasbdduable-
Superclass annotation (oembeddable-superclass XML descriptor element) is used to des-
ignate an embeddable superclass.

33 6/25/05



Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

A class designated as an embeddable superclass has no separate table defined for it. Its mapping infor-
mation is applied to the entities that inherit from it.

A class designated &mbeddableSuperclass  can be mapped in the same way as an entity except
that the mappings will apply only to its subclasses since no table exists for the embeddable superclass.
When applied to the subclasses the inherited mappings will apply in the context of the subclass tables.
Mapping information may be overridden in such subclasses by using\tthibuteOverride

annotation oattribute-override XML element.

All other entity mapping defaults apply equally to a class designatechbeddableSuperclass

The following example illustrates the definition of a concrete class as an embeddable superclass.

6/25/05

34



Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Public Draft Entities

2.1.10

Example: Concrete class as an Embeddable Superclass

@EmbeddableSuperclass(access=FIELD)
public class Employee {

}

@Id protected Integer empld;

@Version protected Integer version;
@ManyToOne @JoinColumn(name="ADDR")
protected Address address;

public Integer getEmpld() { ... }

public void setEmpld(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address addr) { ... }

/I Default table is FTEMPLOYEE table
@Entity
public class FTEmployee extends Employee {

}

Il Inherited empld field mapped to FTEMPLOYEE.EMPID

/I Inherited version field mapped to FTEMPLOYEE.VERSION
/I Inherited address field mapped to FTEMPLOYEE.ADDR fk
private Integer salary;

public FTEmployee() {}
I/ Defaults to FTEMPLOYEE.SALARY

public Integer getSalary() { ... }
public void setSalary(Integer salary) { ... }

@Entity(access=FIELD) @Table(name="PT_EMP")
@AttributeOverride(name="address", column=@Column(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

/I Inherited empld field mapped to PT_EMP.EMPID

/I Inherited version field mapped to PT_EMP.VERSION

// address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(hame="WAGE")

protected Float hourlyWage;

public PartTimeEmployee() {}

public Float getHourlyWage() { ... }
public void setHourlyWage(Float wage) { ... }

Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database schema:

* asingle table per class hierarchy

35 6/25/05



Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Public Draft Requirements on the Entity Class

* asingle table per concrete entity class

* astrategy in which fields that are specific to a subclass are mapped to a separate table than the
fields that are common to the parent class, and a join is performed to instantiate the subclass.

An implementation is required to support the single table per class hierarchy inheritance mapping strat-
egy.

Support for the other inheritance mapping strategies is optional in this release and will be
required in the next release of this specification. Support for the combination of inheritance
strategies will be addressed further in a future draft of this specification.

2.1.10.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
gueries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

2.1.10.2 Table per Class Strategy
In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:
* |t provides poor support for polymorphic relationships.

e Ittypically requires that SQL UNION queries (or a separate SQL query per subclass) be issued
for queries that are intended to range over the class hierarchy.

2.1.10.3 Joined Subclass Strategy
In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each sub-
class is represented by a separate table that contains those fields that are specific to the subclass (not
inherited from its superclass), as well as the column(s) that represent its primary key. The primary key
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.
It has the drawback that it requires that one or more join operations be performed to instantiate instances

of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range
over the class hierarchy likewise require joins.

6/25/05 36



Sun Microsystems, Inc.

EntityManager

Chapter 3

3.1

Enterprise JavaBeans 3.0, Public Draft Entity Operations

Entity Operations

This chapter describes the use of BtityManager  API to manage the entity instance lifecycle and
the use of thQuery API to retrieve and query entities and their persistent state.

EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are managed.

TheEntityManager  interface defines the methods that are used to interact with the persistence con-
text. TheEntityManager APl is used to create and remove persistent entity instances, to find enti-
ties by their primary key identity, and to query over entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application, and
which must be colocated in their mapping to a single database.

Section 3.1 defines thentityManager  interface. The entity instance lifecycle is described in Sec-
tion 3.2. The relationship between an EntityManager and a persistence unit is described in Chapter 6.

37 6/25/05



Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Public Draft

3.1.1 EntityManager Interface

package javax.persistence;

/**

* Interface used to interact with the persistence context.
*/

public interface EntityManager {

EntityManager

/**

* Make an instance managed and persistent.

* @param entity

* @throws lllegalArgumentException if not an entity
or entity is detached

* @throws TransactionRequiredException if there is
no transaction

*

/

public void persist(Object entity);

/**

* Merge the state of the given entity into the

* current persistence context.

* @param entity

* @return the instance that the state was merged to

* @throws lllegalArgumentException if instance is not an
entity or is a removed entity

* @throws TransactionRequiredException if there is
no transaction

*/

public <T> T merge(T entity);

/**

* Remove the instance.

* @param entity

* @throws lllegalArgumentException if not an entity
or if a detached entity

* @throws TransactionRequiredException if there is
no transaction

*/

public void remove(Object entity);

/**

* Find by primary key.

* @param entityClass

* @param primaryKey

* @return the found entity instance or null

* if the entity does not exist
* @throws lllegalArgumentException if the first argument does
not denote an entity type or the second

* argument is not a valid type for that
* entity’s primary key
*/

public <T> T find(Class<T> entityClass, Object primaryKey);

/**

* Get an instance, whose state may be lazily fetched.

* |f the requested instance does not exist in the database,

* throws EntityNotFoundException when the instance state is

6/25/05

38



Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Public Draft Entity Operations
* first accessed. (The container is permitted to throw
* EntityNotFoundException when get is called.)
* The application should not expect that the instance state will
* be available upon detachment, unless it was accessed by the
* application while the entity manager was open.
* @param entityClass
* @param primaryKey
* @return the found entity instance
* @throws lllegalArgumentException if the first argument does
* not denote an entity type or the second
* argument is not a valid type for that
* entity’s primary key
* @throws EntityNotFoundException if the entity state
cannot be accessed
*/
public <T> T getReference(Class<T> entityClass, Object prima-
ryKey);

/**
* Synchronize the persistence context to the
* underlying database.
* @throws TransactionRequiredException if there is

no transaction
* @throws PersistenceException if the flush fails
*/
public void flush();
/**
* Refresh the state of the instance from the database,
* gverwriting changes made to the entity, if any.
* @param entity
* @throws lllegalArgumentException if not an entity

or entity is not managed
* @throws TransactionRequiredException if there is

no transaction
* @throws EntityNotFoundException if the entity no longer

exists in the database
*/
public void refresh(Object entity);
/**
* Check if the instance belongs to the current persistence
* context.
* @param entity
* @return
* @throws lllegalArgumentException if not an entity
*
public boolean contains(Object entity);
/**
* Create an instance of Query for executing an
* EJB QL statement.
* @param ejbqlString an EJB QL query string
* @return the new query instance
* @throws lllegalArgumentException if query string is not valid
*
public Query createQuery(String ejbqlString);
/**
39 6/25/05



Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Public Draft EntityManager

* Create an instance of Query for executing a

* named query (in EJB QL or native SQL).

* @param name the name of a query defined in metadata

* @return the new query instance

* @throws lllegalArgumentException if query string is not valid
*

/

public Query createNamedQuery(String name);

/**
* Create an instance of Query for executing
* a native SQL statement.
* @param sqlString a native SQL query string
* @return the new query instance
* @throws lllegalArgumentException if query string is not valid
*
/

public Query createNativeQuery(String sqlString);

/**
* Create an instance of Query for executing
* a native SQL query.
* @param sqlString a native SQL query string
* @param resultClass the class of the resulting instances
* @return the new query instance
* @throws lllegalArgumentException if query string is not valid
*
/

public Query createNativeQuery(String sqlString, Class result-

Class);

/**
* Create an instance of Query for executing
* a native SQL query.
* @param sqlString a native SQL query string
* @param resultSetMapping the name of the result set mapping
* @return the new query instance
* @throws lllegalArgumentException if query string is not valid
*
/
public Query createNativeQuery(String sqlString, String result-

SetMapping);

/**

* Closes an application-managed EntityManager.

* This method can only be called when the EntityManager

* is not associated with an active transaction.

* After an EntityManager has been closed, all methods on the
* EntityManager instance will throw the lllegalStateException
* except for isOpen, which will return false.

* @throws lllegalStateException if the EntityManager is

* associated with an active transaction or if the
* EntityManager is container-managed.
*/

public void close();

/**

* Indicates whether the EntityManager is open.

* @return true until the EntityManager has been closed.
*/

public boolean isOpen();

/**

6/25/05

40



Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

3.1.2

* Returns the resource-level transaction object.
* The EntityTransaction instance may be used serially to
* begin and commit multiple transactions.
* @return EntityTransaction instance
* @throws lllegalStateException if invoked on a JTA
EntityManager or an EntityManager that has been closed.
*
/
public EntityTransaction getTransaction();

}

Thepersist , merge, remove , flush , andrefresh  methods must be invoked within a transac-
tion context. If there is no transaction context, tlaax.persistence.TransactionRe-
quiredException is thrown.

If an argument to thereateQuery , createNamedQuery , or createNativeQuery method is
not a valid query string or result set specification for the method, the lllegalArgumentException may be
thrown or the query execution will fail.

Runtime exceptions thrown by the methods of BrgityManager  interface will cause the current
transaction to be rolled back.

The methodsclose , isOpen , and getTransaction are used to manage application-managed

entity managers and their lifecycle. See Section 5.2.2, “Obtaining an Application-managed Entity Man-
ager”.

Example of Use of EntityManager API

3.2

@Stateless public class OrderEntry {
@PersistenceContext EntityManager em;

public void enterOrder(int custID, Order newOrder) {
Customer cust = (Customer)em.find("Customer", custID);
cust.getOrders().add(newOrder);
newOrder.setCustomer(cust);
}
}

Entity Instance’s Life Cycle

This section describes tlntityManager  operations for managing an entity instance’s lifecycle. An
entity instance may be characterized as being new, managed, detached, or removed.

* A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

* A managed entity instance is an instance with a persistent identity that is currently associated
with a persistence context.

41 6/25/05



Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Public Draft Entity Instance’s Life Cycle

* A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

* A removed entity instance is an instance with a persistent identity, associated with a persis-
tence context, that is scheduled for removal from the database.

The following subsections describe the effect of lifecycle operations upon entities. Usecabttzale

annotation element may be used to propagate the effect of an operation to associated entities. The cas-
cade functionality is most typically used in parent-child relationships.

3.2.1 Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invokipgrist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an ehétg as follows:

* If X'is a new entity, it becomes managed. The entity X will be entered into the database at or
before transaction commit or as a result of the flush operation.

* If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other
entities is annotated with theascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

* If X is a removed entity, it becomes managed.

* If Xis a detached object, an lllegalArgumentException will be thrown by the persist operation
(or the transaction commit will fail).

* For all entities Y referenced by a relationship from X, if the relationship to Y has been anno-

tated with thecascade element valueascade=PERSIST or cascade=ALL , the persist
operation is applied to Y.

3.2.2 Removal

A managed entity instance becomes removed by invokingaimeve method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

e If Xis a new entity, it is ignored by the remove operation. However, the remove operation is
cascaded to entities referenced by X, if the relationships from X to these other entities is anno-
tated with thecascade=REMOVEor cascade=ALL annotation element value.

* If Xis a managed entity, the remove operation causes it to become removed. The remove oper-
ation is cascaded to entities referenced by X, if the relationships from X to these other entities
is annotated with theascade=REMOVEor cascade=ALL annotation element value.

6/25/05 42



Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

* If Xis a detached entity, an lllegalArgumentException will be thrown by the remove operation
(or the transaction commit will fail).

* If Xis a removed entity, it is ignored by the remove operation.

* Aremoved entity X will be removed from the database at or before transaction commit or as a
result of the flush operation. Accessing a removed entity is undefined.

3.2.3 Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synchroniza-
tion invol\gn]g writing to the database any updates to persistent entities and their relationships as speci-
fied above’

Bidirectional relationships between managed entities will be persisted based on references
held by the owning side of the relationship. It is the developer’s responsibility to keep the
in-memory references held on the owning side and those held on the inverse side consistent
with each other when they change.

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database. Developers may choose whether or not to update references
held by the inverse side when the owning side changes, depending on whether the application
can handle out-of-date references on the inverse side until the next database refresh occurs."

The persistence provider runtime is permitted to perform synchronization to the database at other times
as well, for example, before query execution. Tlash method can be used to force synchronization.

It applies to entities associated with the persistence context-lliseMode annotation can be used to
further control synchronization semantics.

The semantics of the flush operation, applied to an extie as follows:

* If X is a managed entity, it is synchronized to the database.

* For all entities Y referenced by a relationship from X, if the relationship to Y has been
annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL , the persist operation is applied to Y.

* For any entity Y referenced by a relationship from X, where the relationship to Y has
not been annotated with tltascade element valueascade=PERSIST or cas-
cade=ALL :

* If Y is new or removed, an lllegalStateException will be thrown by the flush
operation (and the transaction rolled back) or the transaction commit will
fail.

* If Y is detached, the semantics depend upon the ownership of the relation-
ship. If X owns the relationship, any changes to the relationship are synchro-

[7] It does not involve a refresh of any managed entities unlessftesh  operation is explicitly invoked on those entities.

43 6/25/05



Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Public Draft Entity Instance’s Life Cycle

nized with the database; otherwise, if Y owns the relationships, the behavior
is undefined.

* If X is a removed entity, it is removed from the database. No cascade options are relevant.

3.2.4 Detached Entities

When the persistence context ends, all managed entity instances associated with the context become
detached.

The application may safely access the available state of available detached entity instances after the per-
sistence context ends. The available state includes:

* Any persistent field or property not markietch=LAZY
* Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the state of an associated instance may only be safely
accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved usifigd ()
* Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN clause.

* Any entity instance for which an instance variable holding non-primary-key persistent state
was accessed by the application

* Any entity instance that may be reached from another available instance by navigating associa-
tions markedetch=EAGER

Detached entity instances continue to live outside of the persistence context in which they were per-
sisted or retrieved, and their state is no longer guaranteed to be synchronized with the database state.

A detached entity may also result from serializing an entity, or otherwise passing it by value—e.g, to a
separate application tier, through a remote interface, etc.—and the same rules apply.

3.2.4.1 Merging Detached Entity State

Themerge operation allows for the propagation of state from detached entities onto persistent entities
managed by the EntityManager.

The semantics of thmerge operation applied to an entity X are as follows:

* If Xis a detached entity, it is copied onto a pre-existing managed entity instance X' of the same
identity or a new managed copy of X is created.

* If Xis a new entity instance, a new managed entity instance X' is created and the state of X is
copiedinto the new managed entity instance X'.

6/25/05 44



Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Public Draft Entity Operations

* If X is a removed entity instance, an lllegalArgumentException will be thrown by the merge
operation (or the transaction commit will fail).

* If Xis a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been anno-
tated with thecascade element valueascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having tascade element value
cascade=MERGE or cascade=ALL , Y is merged recursively as Y'. For all such Y refer-
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same object as
X")

e If X'is an entity merged to X', with a reference to another entity Y, whemrscade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yields a
reference to a managed object Y' with the same persistent identity as Y.

Version columns used by the entity should be checked by the persistence runtime implementation
during the merge operation or at flush or commit time.

3.2.5 Managed Instances

The contains() method can be used to determine whether an entity instance is managed in the cur-
rent persistence context.

Thecontains  method returns true:
* If the entity has been retrieved from the database, and has not been removed or detached.

* Ifthe entity instance is new, and tpersist method has been called on the entity or the per-
sist operation has been cascaded to it.

Thecontains method returns false:
¢ |f the instance is detached.

* If the remove method has been called on the entity, or the remove operation has been cas-
caded to it.

* Ifthe instance is new, and tipersist  method has not been called on the entity or the persist
operation has not been cascaded to it.

Note that the effect of the cascading of persist or remove is immediately visible wotitains
method, whereas the actual insertion or deletion of the database representation for the entity may be
deferred until the end of transaction.

3.2.6 Transaction Rollback
Transaction rollback causes a pre-existing managed instance or removed instance to become detached.

45 6/25/05



Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Public Draft Persistence Context

3.3 Persistence Context
A persistence context may either be scoped to a transaction, or have a scope that extends beyond that of
a single transaction (extended persistence context). The PewistenceContextType is used
to define the persistence context scope:
public enum PersistenceContextType {
TRANSACTION,
EXTENDED
}
By default, a persistence context's lifecycle corresponds to the scope of a transaction (i.e., it is of type
PersistenceContextType. TRANSACTION ).
The PersistenceContextType is that defined when the EntityManager instance is created
(whether explicitly, or in conjunction with injection or JNDI lookup). See Section 5.4.
3.3.1 Extended Rersistence Context
A persistence context may be maintained across multiple transactions by specifying the persistence con-
text as an extended persistence context.
When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple trans-
actions and non-transactional invocations of the EntityManager.
An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager. See Section
5.4.
3.4 Entity Listeners and Callback Methods

A method may be designated as a callback method to receive notification of entity life cycle events.
Callback methods are annotated with a callback annotation or denoted in the XML descriptor 8 such.

A entity listener class may be used instead of callback methods defined directly on the entity class. An
entity listener class is denoted using thetityListener annotation on the entity class with which
it is associated or denoted in the XML descriptor as such.

Entity listeners are stateless. The lifecycle of an entity listener is unspecified. Listeners are statically
configured for an entity class by use of metadata annotations or the XML descriptor.

The entity listener class must have a public no-arg constructor.

(8]

An entity class, even when used within the context of an EJB application, must not implenjevaxtegb.EntityBean
callback interface.

6/25/05

46



Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Public Draft Entity Operations

The annotations used for callback methods on the entity class and for callback methods on the callback
listener class are the same. The signatures of individual methods, however, differ. The same method
may be annotated with more than one callback annotation, thus serving for more than one callback.
Any subset or combination of annotations appropriate to the entity may be specified on the entity class
or on the associated listener class. The same callback may not be specified on both the entity class and
the listener class or more than once on either class.

The following rules apply to callbacks:

* Callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be rolled back.

* Callback methods must not throw application exceptions.

* Callbacks can invoke JNDI, JDBC, JMS, and enterprise beans, but not the EntityManager.

Callback methods defined on an entity class have the following signature:

public void <METHOD>()

Callback methods defined on an entity listener class have the following signature:
public void <METHOD>(Object)

whereObject may be declared as the actual entity type, which is the argument passed to the callback
method at runtime.

Tthe following lifecycle event callbacks are supported. They may be defined on the entity class or
entity listener class.

* PrePersist

* PostPersist

* PreRemove
¢ PostRemove
* PreUpdate

* PostUpdate

e PostLoad

47 6/25/05



Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Public Draft Entity Listeners and Callback Methods

3.4.1 Semantics of the Life Cycle Callback Methodsdr Entities

ThePrePersist andPreRemove callback methods are invoked for a given entity before the respec-
tive EntityManager persist and remove operations for that entity are executed, as specified in section
3.2. These callbacks will also be invoked on all entities to which these operations are cascaded. The
PrePersist andPreRemove methods will always be invoked as part of the synchronous persist and
remove operations. Exceptions thrown by any of these callbacks cause the current transaction to be
rolled back.

ThePostPersist  andPostRemove callback methods are invoked for an entity after the respective
EntityManager persist and remove operations for that entity are executed. These callbacks will also be
invoked on all entities to which these operations are cascadedd$tPersist  andPostRemove

methods will be invoked after the database insert and delete operations respectively. This may be
directly after the persist or remove operations have been invoked or it may be directly after a flush oper-
ation has occurred or it may be at the end of the transaction. Exceptions thrown by any of these call-
backs cause the current transaction to be rolled back.

ThePreUpdate andPostUpdate callbacks occur before and after the database update operations to
entity data respectively. This may be at the time the entity state is updated or it may be at the time state
is flushed to the database or at the end of the transaction.

Note that it is implementation-dependent as to wheBretJpdate andPostUpdate call-

backs occur when an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

ThePostLoad method for an entity is invoked after the entity has been loaded into the current persis-
tence context from the database or after the refresh operation has been applied toRbsilead
method is invoked before a query result is returned or accessed or before an association is traversed.

If a superclass of an entity class on which a callback is defined (either directly or on a callback listener
class for the entity class) specifies the same callback annotation, the callback defined by the superclass
is not invoked. If the entity class does not define such a callback, the callback defined by the most spe-
cific superclass is invoked.

The entity callback methods are invoked in the transaction and security contexts of the calling applica-
tion.

The JNDI context for the entity callback methods is defined by that of the calling component, if any.

Portable applications must not invokatityManager  or Query operations or access other entity
instances in a callback meth@#.

&)

The semantics of such operations may be standardized in a future release of this specification.

6/25/05

48



Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Public Draft Entity Operations

3.4.2 Example

@Entity
@EntityListener(com.acme.AlertMonitor.class)
public class AccountBean implements Account {

Long accountld;
Integer balance;
boolean preferred;

public Long getAccountld() { ... }
public Integer getBalance() { ... }
@Transient // because status depends upon non-persistent context
public boolean isPreferred() { ... }

public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException {... }

@PrePersist
public void validateCreate() {
if (getBalance() < MIN_REQUIRED_BALANCE)
throw new AccountException("Insufficient balance to open an
account™);

}

@PostLoad
public void adjustPreferredStatus() {
preferred =
(getBalance() >= AccountManager.getPreferredStatu-
sLevel());
}

}

public class AlertMonitor {

@PostPersist
public void newAccountAlert(Account acct) {
Alerts.sendMarketingInfo(acct.getAccountld(), acct.getBal-
ance());

3.5 Query API

The Query API is used for both static queries (i.e., named queries) and dynamic queries. The Query
API also supports named parameter binding and pagination control.

49 6/25/05



Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Public Draft

3.5.1 Query Interface

package javax.persistence;

import java.math.BigDecimal;
import java.util.Calendar;
import java.util.Date;

import java.ultil.lterator;
import java.util.List;

* Interface used to control query execution.

public interface Query {

/**
* Execute a SELECT query and return the query results
* as a List.
* @return a list of the results
* @throws lllegalStateException if called for an EJB QL
UPDATE or DELETE statement
*
/

public List getResultList();
/**

* Execute a SELECT query that returns a single result.

* @return the result

* @throws EntityNotFoundException if there is no result

* @throws NonUniqueResultException if more than one result

* @throws lllegalStateException if called for an EJB QL
UPDATE or DELETE statement

*

/

public Object getSingleResult();
/**

* Execute an update or delete statement.
* @return the number of entities updated or deleted
* @throws lllegalStateException if called for an EJB QL
SELECT statement
* @throws TransactionRequiredException if there is
no transaction
*
/

public int executeUpdate();

/**

* Set the maximum number of results to retrieve.

* @param maxResult

* @return the same query instance

* @throws lllegalArgumentException if argument is negative
*/

public Query setMaxResults(int maxResult);

/**

* Set the position of the first result to retrieve.

* @param start position of the first result, numbered from 0
* @return the same query instance

* @throws lllegalArgumentException if argument is negative
*/

public Query setFirstResult(int startPosition);

Query API

6/25/05

50



Sun Microsystems, Inc.

Query API

Enterprise JavaBeans 3.0, Public Draft

/**

* Set an implementation-specific hint.

* |f the hint name is not recognized, it is silently ignored.
* @param hintName

* @param value

* @return the same query instance

* @throws lllegalArgumentException if the second argument is not
* valid for the implementation

*/
public Query setHint(String hintName, Object value);

/**

* Bind an argument to a named parameter.
* @param name the parameter name
* @param value
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
* or argument is of incorrect type
*
/
public Query setParameter(String name, Object value);

/**

* Bind an instance of java.util.Date to a named parameter.

* @param name

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string

*

/

public Query setParameter(String name, Date value, TemporalType

temporalType);

/**

* Bind an instance of java.util.Calendar to a named parameter.

* @param name

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string

*

/

public Query setParameter(String name, Calendar value, Temporal-

Type temporalType);

/**

* Bind an argument to a positional parameter.
* @param position
* @param value
* @return the same query instance
* @throws lllegalArgumentException if position does not
correspond to positional parameter of query
* or argument is of incorrect type
*
/
public Query setParameter(int position, Object value);

Entity Operations

51

6/25/05



Sun Microsystems, Inc.

Entity Operations

3511

Enterprise JavaBeans 3.0, Public Draft Query API

/**

* Bind an instance of java.util.Date to a positional parameter.

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not
correspond to positional parameter of query

*/

public Query setParameter(int position, Date value, TemporalType
temporalType);

/**

* Bind an instance of java.util.Calendar to a positional param-
eter.

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not

correspond to positional parameter of query

*/

public Query setParameter(int position, Calendar value, Temporal-
Type temporalType);

/**

* Set the flush mode type to be used for the query execution.
* @param flushMode
*/

public Query setFlushMode(FlushModeType flushMode);

The elements of a query result whose SELECT clause consists of more than one value are of type
Object]]

An lllegalArgumentException is thrown if a parameter name is specified that does not corre-
spond to a hamed parameter in the query string, if a positional value is specified that does not corre-
spond to a positional parameter in the query string, or if the type of the parameter is not valid for the
query. This exception may be thrown when the parameter is bound, or the execution of the query may
fail.

Runtime exceptions thrown by the methods of @hgery interface will cause the current transaction to
be rolled back.

Example

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

6/25/05

52



Sun Microsystems, Inc.

Query API

3.5.2

Enterprise JavaBeans 3.0, Public Draft Entity Operations

Parameter Names

3.5.3

A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identifiers
defined in Section 4.4.1. The use of named parameters applies to EJB QL, and is not defined for native
gueries. Only positional parameter binding may be portably used for native queries.

Named Queries

354

Named queries are static queries expressed in metadata. Named queries can be defined in EJB QL or in
SQL.

The following is an example of the definition of an EJB QL named query:

@NamedQuery(

name="findAllCustomersWithName",

queryString="SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName"
)

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;

customers = em.createNamedQuery("findAllCustomersWithName")

.setParameter("custName", "Smith")
.getResultList();

Polymorphic Queries

3.5.5

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query conditions.

For example, the query

select avg(e.salary) from Employee e where e.salary > 80000

returns the average salary of all employees, including subtypEmpfoyee , such asManager and
Exempt.

SOQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities, sca-
lar values, or a combination of the two. The entities returned by a query may be of different entity

types.

The SQL query facility is intended to provide support for those cases where it is necessary to
use the native SQL of the target database in use (and/or where EJB QL cannot be used). Native
SQL queries are not expected to be portable across databases.

53 6/25/05



Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Public Draft Query API

When multiple entities are returned by a SQL query, the entities must be specified and mapped to the
column results of the SQL statement irsgIResultSetMapping metadata definition. This result

set mapping metadata can then be used by the persistence provider runtime to map the JDBC results
into the expected objects. See Section 8.3.4 for the definition @dlResultSetMapping meta-

data annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form may be used and
SqlResultSetMapping metadata is not required.

This is illustrated in the following example in which a native SQL query is created dynamically using
thecreateNativeQuery method and the entity class that specifies the type of the result is passed in
as an argument.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
com.acme.Order.class);

When executed, this query will return a Collection of all Order entities for items named "widget". The
same results could also be obtained uSigiResultSetMapping

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
"WidgetOrderResults");
In this case, the metadata for the query result type might be specified as follows:

@SqlResultSetMapping(name="WidgetOrderResults",
entities=@EntityResult(entityClass=com.acme.Order.class))

The following query andSglResultSetMapping metadata illustrates the return of multiple entity
types and assumes default metadata and column name defaults.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Iltem i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={
@EntityResult(entityClass=com.acme.Order.class),
@EntityResult(entityClass=com.acme.ltem.class)

)

When an entity is being returned, the SQL statement should select all of the columns that are mapped to
the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined.

6/25/05

54



Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Public Draft

Entity Operations

An example of combining multiple entity types and that includes aliases in the SQL statement requires
that the column names be explicitly mapped to the entity fields FidldResult annotation is used

for this purpose.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item")}),

@EntityResult(entityClass=com.acme.ltem.class)

)

Scalar result types can be included in the query result by specifyingdhennResult
the metadata.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.name AS item_name, " +
"FROM Order o, Item i " +
"WHERE (order_qguantity > 25) AND (order_item = i.id)",
"OrderResults");

@SglResultSetMapping(name="0OrderResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item™")})},

columns={

@ColumnResult(name="item_name")}

)

annotation in

The use of named parameters is not defined for native queries. Only positional parameter binding for

SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.

55

6/25/05



Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Public Draft Query API

6/25/05 56



Sun Microsystems, Inc.

Overview Enterprise JavaBeans 3.0, Public Draft Query Language

aaers QUErNY Language

The Enterprise JavaBeans query language, EJB QL, is used to define queries over entities and their per-
sistent state. EJB QL enables the application developer to specify the semantics of queries in a portable
way, independent of the particular database in use in an enterprise environment.

This specification release augments the previous version of EJB QL defined in [5] with additional oper-
ations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, projection, and sub-
queries. It also provides for the use of EJB QL in dynamic queries.

The full range of EJB QL may be used in both static and dynamic queries. Both static and dynamic que-
ries may be parameterized. Named parameters as well as positional parameters are supported. Named
parameters, which are new to this specification release, are described in Section 4.6.4.2.

This chapter provides the full definition of the language.

4.1 Overview

EJB QL is a query specification language for dynamic queries and for static queries expressed through
metadata. It applies both to the persistent entities defined by this specification, as well as to the earlier
EJB 2.1 entity beans with container-managed persistence (and their finder and select methods) as
defined in [1][10)

57 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft Overview

EJB QL can be compiled to a target language, such as SQL, of a database or other persistent store. This
allows the execution of queries to be shifted to the native language facilities provided by the database,
instead of requiring queries to be executed on the runtime representation of the entity state. As a result,
guery methods can be optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entities, including
their relationships, for its data model, and it defines operators and expressions based on this data model.
EJB QL uses a SQL-like syntax to select objects or values based on entity abstract schema types and
relationships among them. It is possible to parse and validate EJB QL queries before entities are
deployed because EJB QL is based on abstract schema types.

The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which EJB QL queries operate. EJB QL
translates queries over this persistent schema abstraction into queries that are executed over
the database schema to which entities are mapped. See Section 4.3.

The developer uses EJB QL to write queries based on the abstract persistence schemas and the relation-
ships defined in the metadata annotations or XML descriptor. The abstract schema types of a set of enti-
ties can be used in a query if the entities are defined in the same persistence unit as the query. The path
expressions of EJB QL allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be colocated in their mapping to a single database.

Compatibility Note: For EJB 2.1 and earlier entity beans, the scope of the persistence unit is
defined by the ejb-jar file. It is assumed that a single deployment descriptor in an ejb-jar file
constitutes a nondecomposable unit for the container responsible for implementing the
abstract persistence schemas of the entity beans and the relationships defined in the deploy-
ment descriptor and the ejb-jar file. Queries can be written by utilizing navigation over the
cmr-fields of related beans supplied in the same ejb-jar file.

EJB QL queries can be used in several different ways:

* as queries for selecting entity objects or values through use of methods Qutry API
(Section 3.5.1), where the queries are expressed either in metadata or dynamically.

* as queries for selecting entity objects through finder methods defined in the home interface of
EJB 2.1 container-managed entity bean components using the EJB 2.1 API.

* as queries for selecting entity objects or other values derived from an entity bean’s abstract
schema type through select methods defined on the entity bean class of EJB 2.1 container-man-
aged entity bean components using the EJB 2.1 API.

Restrictions upon the use of EJB QL for the finder and select methods of EJB 2.1 container-managed
persistence entity beans are described in [1].

[10] We use the term “entity” in this chapter to refer both to entities as defined by this specification document as weleastio th

beans with container-managed persistence defined by [1]. Where it is important to distinguish the latter, we refer to them as “EJB
2.1 entity beans.”

6/25/05

58



Sun Microsystems, Inc.

EJB QL Statement Types Enterprise JavaBeans 3.0, Public Draft Query Language

4.2 EJB QL Statement Types

An EJB QL statement may be either a select statement, an update statement, or a delete statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, an EJB QL statement is defined as:
EJB QL :: = select_statement | update_statement | delete _statement

Any EJB QL statement may be constructed dynamically or may be statically defined in a metadata
annotation or XML descriptor element.

All EJB QL statement types may have parameters.

4.2.1 Select Statements

An EJB QL select statement is a string which consists of the following clauses:
* a SELECT clause, which determines the type of the objects or values to be selected.

* a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the other clauses of the query apply.

* an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

* an optional GROUP BY clause, which allows query results to be aggregated in terms of
groups.

* an optional HAVING clause, which allows filtering over aggregated groups.

* anoptional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, an EJB QL select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby _clause]
[having_clause] [orderby clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate
that the other clauses are optional.

4.2.2 Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities.

59 6/25/05



Sun Microsystems, Inc.

Query Language

4.3

Enterprise JavaBeans 3.0, Public Draft ~ Abstract Schema Types and Query Domains

In BNF syntax, these operations are defined as:
update_statement :: = update_clause [where _clause]
delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.11.

Compatibility Note: Update and delete statements are not supported for EJB 2.1 entity beans with con-
tainer-managed persistence.

Abstract Schema Types and Query Domains

EJB QL is a typed language, and every expression in EJB QL has a type. The type of an expression is
derived from the structure of the expression, the abstract schema types of the identification variable dec-
larations, the types to which the persistent fields and relationships evaluate, and the types of literals.

The abstract schema type of an entity is derived from the entity class and the metadata information pro-
vided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity can be characterized as follows:

* For every persistent field or get accessor method (for a persistent property) of the entijty class
there is a field (“state-field”) whose abstract schema type corresponds to that of the field or the
result type of the accessor methbd.

* For every persistent relationship field or get accessor method (for a persistent relationship
property) of the entity class, there is a field (“association-field”) whose type is the abstract
schema type of the related entity (or, if the relationship is a one-to-many or many-to-many, a
collection of suchitZ]

Abstract schema types are specific to the EJB QL data model. The persistence provider is not required
to implement or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entities that are defined in
the same persistence unit.

[11]

[12]

For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmp-field elements of the deployment
descriptor.
For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmr-field elements of the deployment
descriptor.

6/25/05

60



Sun Microsystems, Inc.

Abstract Schema Types and Query Domains  Enterprise JavaBeans 3.0, Public Draft Query Language

The domain of a query may be restricted by tiaigability of the relationships of the entity on which it

is based. The association-fields of an entity’s abstract schema type determine navigability. Using the
association-fields and their values, a query can select related entities and use their abstract schema types
in the query.

4.3.1 Naming

Entities are designated in EJB QL query strings by their abstract schema names. The developer assigns
unique abstract schema names to entities as part of the development process so that they can be used
within queries. These unique names are scoped within the persistence unit.

The abstract schema name is defined by mtiaee element of theEntity  annotation (or the
entity-name XML descriptor element), and defaults to the unqualified name of the entity class.

Compatibility Note: For EJB 2.1 entities, abstract schema names are specified by the

abstract-schema-name elements in the deployment descriptor, and there is a one-to-one
mapping between entity bean abstract schema types and entity bean homes.

4.3.2 Example

This example assumes that the application developer provides several entity classes, representing
orders, products, line items, shipping addresses, and billing addresses. The abstract schema types for
these entities ar®©rder , Product , Lineltem , ShippingAddress , and BillingAddress

respectively. These entities are logically in the same persistence unit, as shown in Figure 1.

Figure 1 Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit.

The entitiesShippingAddress  andBillingAddress each have one-to-many relationships with
Order . There is also a one-to-many relationship betwemler and Lineitem . The entity
Lineltem is related tdProduct in a many-to-one relationship.

61 6/25/05



Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

Queries to select orders can be defined by navigating over the association-fields and state-fields defined
by Order andLineltem . A query to find all orders with pending line items might be written as fol-
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineltems AS |
WHERE l.shipped = FALSE

This query navigates over the association-flelditems  of the abstract schema ty@der to find
line items, and uses the state-fishipped of Lineltem to select those orders that have at least one
line item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although predefined reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to beCuigpe

Because the same persistence unit defines the abstract persistence schemas of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state-fields and association-fields of both the abstract schem®tgpesand Product .

For example, if the abstract schema typ®duct has a state-field nameuoductType , a query

over orders can be specified using this state-field. Such a query might be to find all orders for products
with product type office supplies. An EJB QL query string for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

Becaus@rder is related tdProduct by means of the relationships betwe@rder andLineltem

and betweerLineltem and Product , navigation using the association-fieltiseltems and
product is used to express the query. This query is specified by using the abstract schema name
Order , which designates the abstract schema type over which the query ranges. The basis for the navi-
gation is provided by the association-field®eltems  andproduct of the abstract schema types
Order andLineltem respectively.

4.4 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification vari-
ables. An identification variable is an identifier declared in the FROM clause of a query. The domain of
the query may be constrained by path expressions.

Identification variables designate instances of a particular entity abstract schema type. The FROM
clause can contain multiple identification variable declarations separated by a gomma (

from_clause ::=
FROM identification_variable declaration
{, {identification_variable declaration | collection_member_declaration}}*
identification_variable declaration ::= range_variable declaration { join | fetch_join }*

6/25/05 62



Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

44.1

range_variable _declaration :.:= abstract schema_name [AS] identification_variable
Join ::= join_spec association_path_expression [AS] identification variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path _expression | single_valued_association_path expression
join_spec::= [ LEFT [OUTER][INNER ] JOIN
collection_member_declaration ::=

IN (collection_valued path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

Identifiers

4.4.2

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the metlidbdiracter.isJavaldentifierStart

returns true. This includes the underscorg ¢haracter and the dollar sigf)(character. An identifier

part character is any character for which the meti@thracter.isJavaldentifierPart

returns true. The question mafX Character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB BELECTFROM WHERE, UPDATE, DELETE,
JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINGBJECT, NULL. TRUE
FALSE NOT, AND, OR, BETWEENLIKE, IN, AS UNKNOWN!3], EMPTY, MEMBER, OF, IS, AVG,
MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSITION,
CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_ DATE,
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, SOME

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables.

It is recommended that other SQL reserved words also not be as identification variables in EJB

QL queries because they may be used as EJB QL reserved identifiers in future releases of this
specification.

Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.

All identification variables must be declared in the FROM clause. ldentification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the follow-
ing in the same persistence unit:

[13] Not currently used in EJB QL; reserved for future use.

63 6/25/05



Sun Microsystems, Inc.

Query Language

4.4.3

Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

* entity name (as defined by thentity  annotation orentity-name XML descriptor ele-
ment)

* abstract-schema-name (as defined byatbstract-schema-name deployment descriptor
element for EJB 2.1 entity beans)

* ejb-name (as defined by thggb-name deployment descriptor element for EJB 2.1 entity
beans)

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

In the FROM clause declaratioo.lineltems | , the identification variabld evaluates to any
Lineltem value directly reachable fro®@rder . The association-fieldneltems s a collection of
instances of the abstract schema tijpeeltem  and the identification variable refers to an element
of this collection. The type df is the abstract schema typeLafeltem

An identification variable ranges over the abstract schema type of an entity. An identification variable
designates an instance of an entity abstract schema type or an element of a collection of entity abstract
schema type instances. Identification variables are existentially quantified in an EJB QL query.

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The identi-
fication variable declarations are evaluated from left to right in the FROM clause, and an identification

variable declaration can use the result of a preceding identification variable declaration of the query
string.

Range \ariable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of SQL;
optionally, it uses the AS keyword.

range_variable _declaration ::= abstract_schema_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

6/25/05

64



Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

4.4.4

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of the
abstract schema typerder . The SELECT clause of this query determines that it is the orders with
guantities larger than John Smith’s that are returned.

SELECT DISTINCT ol

FROM Order o1, Order 02

WHERE o1l.quantity > 02.quantity AND
02.customer.lastname = ‘Smith’ AND
02.customer.firstname= ‘John’

Path Expressions

An identification variable followed by the navigation operatoy &nd a state-field or association-field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state-field or association-field to which the expression navigates.

Depending on navigability, a path expression that leads to a association-field may be further composed.
Path expressions can be composed from other path expressions if the original path expression evaluates
to a single-valued type (not a collection) corresponding to a association-field. Note that a state field may
correspond to an embedded class. A path expression that endsimple state-field, rather than an
embedded class, is terminal and cannot be further composed.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal association-field in the path expression is null, the path is considered to have no value, and does
not participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follows:

single_valued_path_expression ::=

state_field _path_expression [ single _valued _association_path _expression
state_field _path_expression ::=

{identification _variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}*single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single _valued association_field.}*collection_valued_association_field
state_field ::= {embedded _class state field.}*simple_state field

A single_valued_association_field is designated by the name of an association-field in a one-to-one or
many-to-one relationship. The type of asingle valued association field and thus a
single_valued_association_path_expression is the abstract schema type of the related entity.

A collection_valued_association_field is designated by the name of an association-field in a
one-to-many or a many-to-many relationship. The type afiection_valued_association_field is a col-
lection of values of the abstract schema type of the related entity.

Navigation to a related entity results in a value of the related entity’s abstract schema type.

65 6/25/05



Sun Microsystems, Inc.

Query Language

I

Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

The evaluation of a path expression terminating in a state-field results in the abstract schema type corre-
sponding to the Java type designated by the state-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, ifo designate©rder , the path expressioo.lineltems.product is illegal

since navigation ttineltems  results in a collection. This case should produce an error when the EJB
QL query string is verified. To handle such a navigation, an identification variable must be declared in
the FROM clause to range over the elements oflitheltems  collection. Another path expression

must be used to navigate over each such element in the WHERE clause of the query, as in the following:

SELECT DISTINCT l.product
FROM Order AS o, IN(o.lineltems) |

Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:

select ¢ from Customer ¢, Employee e where c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over entity relationships.

The syntax for explicit join operations is as follows:

jJoin ::= join_spec association_path_expression [AS ] identification_variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path _expression
join_spec::= [ LEFT [OUTER] [ INNER ] JOIN

The following inner and outer join operation types are supported.

4.4.5.1 Inner Joins (Relationship Joins)

A join over an entity relationship is a typical use case for EJB QL. The IN operator in the FROM clause,
described in Section 4.4.6, was introduced by EJB 2.0 for this purpose. This release adds explicit use of
the JOIN operator to provide a more natural SQL-like syntax and to allow a wider range of operations.
The syntax for the inner join operation is

[INNER ] JOIN association_path_expression [AS] identification_variable

6/25/05

66



Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Public Draft Query Language

4.45.2

4453

For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.

SELECT ¢ FROM Customer ¢ JOIN c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT ¢ FROM Customer ¢ INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [5]. It selects those
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1
Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities
where matching values in the join condition may be absent.
The syntax for a left outer join is
LEFT [OUTER] JOIN association_path_expression [AS] identification _variable

For example:

SELECT ¢ FROM Customer ¢ LEFT JOIN c.orders o WHERE c.status = 1

The keyword OUTER may optionally be used:
SELECT ¢ FROM Customer ¢ LEFT OUTER JOIN c.orders o WHERE c.status = 1
Fetch Joins

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

A FETCH JOIN enables the fetching of an association as a side effect of the execution of a query. A
FETCH JOIN is specified over an entity and its related entities.

The syntax for a fetch join is

fetch_join ::= [ LEFT [OUTER][INNER ] JOIN FETCH association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an association that
belongs to an entity that is returned as a result of the query. It is not permitted to specify an identifica-

tion variable for the entities referenced by the right side of the FETCH JOIN clause, and hence refer-
ences to the implicitly fetched entities cannot appear elsewhere in the query.

67 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft The FROM Clause and Navigational Declara-

The following query returns a set of customers. As a side effect, the associated orders for those custom-
ers are also retrieved, even though they are not part of the explicit query result. The persistent fields or
properties of the orders that are eagerly fetched are fully initialized. The initialization of the relationship
properties of the orders that are retrieved is determined by the metadata for the Order entity class.

SELECT DISTINCT ¢
FROM Customer ¢ LEFT JOIN FETCH c.orders
WHERE c.address.state = 'CA’

An identification variable declared byaollection_member_declaration ranges over values of a col-

lection obtained by navigation using a path expression. Such a path expression represents a navigation
involving the association-fields of an entity abstract schema type. Because a path expression can be
based on another path expression, the navigation can use the association-fields of related entities.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path
expression evaluates to a collection type specified as a result of navigation to a collection-valued associ-

The syntax for declaring a collection member identification variable is as follows:

IN (collection_valued _path_expression) [AS] identification_variable

may equivalently be expressed as follows, using the IN operator:

In this example lineltems is the name of an association-field whose value is a collection of
instances of the abstract schema tipeeltem . The identification variable designates a member of
this collection, asingleLineltem abstract schema type instance. In this examplés an identifica-

4.4.6 Collection Member Declarations
ation-field of an entity abstract schema type.
collection_member_declaration ::=
For example, the query
SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’
SELECT DISTINCT o
FROM Order o, IN(0.lineltems) |
WHERE l.product.productType = ‘office_supplies’
tion variable of the abstract schema t{jreler .
4.4.7 EJB QL and SOQL

EJB QL treats the FROM clause similarly to SQL in that the declared identification variables affect the
results of the query even if they are not used in the WHERE clause. Application developers should use
caution in defining identification variables because the domain of the query can depend on whether
there are any values of the declared type.

6/25/05

68



Sun Microsystems, Inc.

WHERE Clause

4.4.8

Enterprise JavaBeans 3.0, Public Draft Query Language

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are nBroduct instances in the database, the domain of the query is empty and no
order is selected.

SELECT o
FROM Order AS o, IN(o.lineltems) |, Product p

Polymorphism

4.5

EJB QL queries are automatically polymorphic. The FROM clause of a query designates not only
instances of the specific entity class(es) to which explicitly refers but of subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the quepﬂtriteria.

WHERE Clause

4.6

The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.

The syntax of the HAVING clause is as follows:

having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.7.

Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expression of
the WHERE clause or HAVING clause.

Note that state-fields that are mapped in serialized form or as lobs may not be portably used in
conditional expressiofs).

[14]

[15]

Such query polymorphism does not apply to EJB 2.1 entity beans, since they do not support inheritance. We plan to consider con-
structs to enable restriction of the polymorphism of queries in a future release.

The implementation is not expected to perform such query operations involving such fields in memory rather than in the database.

69 6/25/05



Sun Microsystems, Inc.

Query Language

4.6.1

Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Literals

4.6.2

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
guote is represented by two single quotes—for example: ‘literal’s’. EJB QL string literals, like Java
String literals, use unicode character encoding.

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. Exact
numeric literals support numbers in the range of Jaag . Exact numeric literals use the Java integer
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2, or a
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numbers in
the range of Javdouble . Approximate literals use the Java floating point literal syntax.

Appropriate suffixes may be used to indicate the specific type of a numeric literal in accordance with the
Java Language Specification.

The boolean literals alBRUEandFALSE

Although predefined reserved literals appear in upper case, they are case insensitive.

Identification Variables

4.6.3

All identification variables used in the WHERE or HAVING clause of an EJB QL SELECT or DELETE
statement must be declared in the FROM clause, as described in Section 4.4.2. The identification vari-
ables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means that

an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.

Path Expressions

4.6.4

Itis illegal to use acollection_valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in an empty_collection_comparison_expression  or
collection_member_expression, or as an argument to the SIZE operator.

Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not be mixed
in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.12.

6/25/05

70



Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

4.6.4.1 Positional Parameters

The following rules apply to positional parameters.

* Input parameters are designated by the question nfgrkrefix followed by an integer. For
example?1.

* Input parameters are numbered starting from 1.

* If the query is associated with a finder or select method, the number of distinct input parame-
ters must not exceed the number of input parameters for the finder or select method. It is not
required that the EJB QL query use all of the input parameters for the finder or select method.
An input parameter evaluates to the abstract schema type of the corresponding parameter
defined in the signature of the finder or select method with which the query is associated. It is
the responsibility of the container to map the input parameter to the appropriate abstract
schema type value.

4.6.4.2 Named Parameters

4.6.5

A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identifiers
defined in Section 4.4.1.

Example:

SELECT ¢
FROM Customer ¢
WHERE c.status = :stat

Section 3.5.1 describes the API for the binding of named query parameters.

Named parameters are not supported for EJB 2.1 finder and select methods.

Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are composed of
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric values,
and numeric literals.

Arithmetic operations use numeric promotion.

Standard bracketing for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

71 6/25/05



Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

conditional _expression :.= conditional _term | conditional _expression OR conditional term
conditional _term ::= conditional factor | conditional _term AND conditional_factor
conditional_factor ::= [ NOT ] conditional _primary
conditional _primary ::= simple_cond_expression [ (conditional_expression)
simple_cond_expression ;=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty _collection _comparison_expression |

collection_member_expression |

exists_expression

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
* Navigation operator. ()

* Arithmetic operators:
+, - unary
* [ multiplication and division
+, - addition and subtraction

e Comparison operators=, >, >=, <, <=, <> (not equal),[NOT] BETWEEN [NOT] LIKE ,
[NOT]IN ,IS[NOT] NULL , IS [NOT] EMPTY, [NOT] MEMBER [OF]

* Logical operators:
NOT
AND
OR

The following sections describe other operators used in specific expressions.

4.6.7 BetweenExpressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression |
string_expression [NOT] BETWEEN string-expression AND string-expression |
datetime_expression [NOT] BETWEEN datetime-expression AND datetime-expression

6/25/05 72



Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

4.6.8

The BETWEEN expression

X BETWEEN y AND z

is semantically equivalent to:

y<=xXANDx <=z

The rules for unknown and NULL values in comparison operations apply. See Section 4.12.
Examples are:

p.age BETWEEN 15 and 19 is equivalent tgp.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19  is equivalent tgp.age < 15 OR p.age > 19

In Expr essions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:
in_expression ::=

state_field _path_expression [NOT]IN (in_item {, in_item}* [ subquery)
in_item ::= literal | input_parameter

The state_field_path_expression must have a string or numeric value.

The literal and/or input_parameter values must ke the same abstract schema type of the
state_field_path_expression in type. (See Section 4.13).

The results of the subquery must be like the same abstract schema type of the
state_field_path_expression in type. Subqueries are discussed in Section 4.6.15, “Subqueries”.

Examples are:

o.country IN (UK’, 'US’, 'France’) is true forUKand false folPeru , and is equivalent
to the expressiofo.country = 'UK’) OR (o.country = 'US’) OR (o.country =’

France’)

o.country NOT IN (UK’, 'US’, 'France’) is false forUKand true forPeru , and is

equivalent to the expressiolNOT ((o.country = 'UK’) OR (o.country = 'US’) OR
(o.country = 'France’))

There must be at least one element in the comma separated list that defines the set of valudN for the
expression.

If the value of astate_field_path_expression in an IN or NOT IN expression islULL or unknown, the
value of the expression is unknown.

73 6/25/05



Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

4.6.9 Lik e Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
The string_expression must have a string value. Thettern value is a string literal or a string-valued
input parameter in which an underscoré 6tands for any single character, a percéft ¢haracter
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optionalscape character is a single-character string literal or a character-valued
input parameter (i.eghar or Character ) and is used to escape the special meaning of the under-
score and percent charactergitern_value.[16]
Examples are:

* address.phone LIKE ‘12%3S true for ‘123’ ‘12993’ and false for ‘1234’

* asentence.word LIKE ‘|_sés true for ‘lose’ and false for ‘loose’

* aword.underscored LIKE \ %’ ESCAPE i§ true for ‘_foo’ and false for ‘bar’

* address.phone NOT LIKE ‘12% false for ‘123’ and ‘12993’ and true for ‘1234’
If the value of thestring_expression or pattern_value is NULL or unknown, the value of the LIKE

expression is unknown. If thescape_character is specified and iBIULL, the value of the LIKE expres-
sion is unknown.

4.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:
{single_valued_path_expression | input_parameter }1S [NOT]NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter
is aNULL value.

4.6.11 Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

[16] Refer to [4] for a more precise characterization of these rules.

6/25/05 74



Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:
SELECT o

FROM Order o
WHERE o.lineltems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

4.6.12 Collection Member Expressions

The syntax for the wuse of the comparison operator MEMBER IBF in  an
collection_member_expression is as follows:

entity_expression [NOT] MEMBER [OF] collection_valued path _expression
entity_expression ::=
single_valued_association_path_expression |
identification_variable |
input_parameter

This expression tests whether the designated value is a member of the collection specified by the collec-
tion-valued path expression.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection-valued path expression or single-valued association-field path expression in the
collection member expression MULL or unknown, the value of the collection member expression is
unknown.

4.6.13 Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.

The syntax of an exists expression is

exists_expression::= [NOT] EXISTS (subquery)

[17] The use of the reserved word OF is optional in this expression.

75 6/25/05



Sun Microsystems, Inc.

Query Language

4.6.14

Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

Example:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

All or Any Expr essions

4.6.15

An ALL conditional expression is a predicate that is true if the comparison operation is true for all val-
ues in the result of the subquery, and that is otherwise false. If the result of the subquery is empty, the
ALL condition is true.

An ANY conditional expression is a predicate that is true if the comparison operation is true for some
value in the result of the subquery, and that is otherwise false. The keyword SOME is synonymous with
ANY. If the result of the subquery is empty, the ANY or SOME condition is false.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>, The
result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.13.

The syntax of an ALL or ANY expression is specified as follows:
all_or_any expression ::= { ALL [ ANY | SOME} (subquery)
Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

Subqueries

Subqueries may be used in the WHERE or HAVING clatile.
The syntax for subqueries is as follows:
subquery ::= simple_select_clause subquery from_clause [where_clause]

[groupby _clause] [having_clause]
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression

(18]

Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause will be
considered in a later release of this specification.

6/25/05

76



Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Public Draft Query Language

4.6.16

subquery from_clause ::=

FROM subselect identification variable declaration

{, subselect _identification_variable declaration}*

subselect_identification_variable_declaration ::=

identification_variable _declaration |

association_path_expression [AS] identification_variable |

collection_member_declaration
simple_select_expression::=

single_valued_path _expression |

aggregate _select_expression |

identification_variable

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

SELECT ¢
FROM Customer ¢
WHERE (SELECT COUNT(0) FROM c.orders 0) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery
(i.e., produce a single result). This is illustrated in the following example involving a numeric compari-
son operation.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT avg(c.balanceOwed) FROM Customer c)

Functional Expressions

4.6.16.1

EJB QL includes the following built-in functions, which may be used in the WHERE or HAVING
clause of a query.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,
simple_arithmetic_expression, simple_arithmetic_expression) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)

77 6/25/05



Sun Microsystems, Inc.

Query Language

4.6.16.2

Enterprise JavaBeans 3.0, Public Draft Conditional Expressions

trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(Sstring_primary, string_primary[, simple_arithmetic _expression)) |

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The first position of a string is denoted by 1.
The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it is assumed to be space (or blank). The optiinalcharacter is a single-character string
literal or a character-valued input parameter (ichar or Character )[19]. The TRIM function
returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively. They return a
string.

The LOCATE function returns the position of a given string within a string, starting the search at a spec-
ified position. It returns the first position at which the string was found as an integer. The first argument
is the string to be located; the second argument is the string to be searched; the optional third argument
is an integer that represents the string position at which the search is started (by default, the beginning of
the string to be searched). The first position in a string is denoted by 1. If the string is not found, 0 is
returned%o]

The LENGTH function returns the length of the string in characters as an integer.

Arithmetic Functions

functions_returning_numerics::=
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.

The MOD function takes two integer arguments and returns an integer.

[19]

[20]

Note that not all databases support the use of a trim character other than the space character; use of this argsulemt may re
queries that are not portable.

Note that not all databases support the use of the third argument to LOCATE; use of this argument may result intcareries tha
not portable.

6/25/05

78



Sun Microsystems, Inc.

GROUP BY, HAVING Enterprise JavaBeans 3.0, Public Draft Query Language

4.7

The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

GROUP BY, HAVING

4.8

The GROUP BY construct enables the aggregation of values according to a set of properties. The HAV-
ING construct enables conditions to be specified that further restrict the query result. Such conditions
are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby item ::= state field _path _expression
having_clause ::= HAVING conditional_expression

If the query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clause.

If there is no GROUP BY clause and the HAVING clause is used, the effect is that of treating the result
of the query as a single group.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any
property that appears in the SELECT clause (other than as an argument to an aggregate function) must
also appear in the GROUP BY clause. In forming the groups, null values are treated as the same for
grouping purposes.

For example:

SELECT c.status, avg(c.filledOrderCount), count(c)
FROM Customer ¢

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause may contain one or more of the following elements: a single range variable or
identification variable that ranges over an entity abstract schema type, a single-valued path expression,
an aggregate select expression, a constructor expression.

79 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft SELECT Clause

In the case of an EJB 2.1 select method, the SELECT clause is restricted to contain one of the
above elements. In the case of a finder method, the SELECT clause is restricted to contain
either a single range variable or a single-valued path expression that evaluates to the abstract
schema type of the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ;=

single_valued_path _expression |

aggregate _select_expression |

identification_variable |

OBJECT (identification_variable) |

constructor_expression
constructor_expression ;=

NEW constructor_name ( constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate select_expression
aggregate_select_expression ::=

{AVG | MAX [MIN [ SUM } ([DISTINCT] state_field path_expression) |

COUNT (/DISTINCT] identification_variable | state_field _path expression |

single_valued_association_path _expression)

All standalone identification variables in the SELECT clause may optionally be qualified by the
OBJECT operator. The SELECT clause must not use the OBJECT operator to qualify path expressions.

For example:

SELECT c.id, c.status
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineltems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result.

If DISTINCT is not specified, duplicate values are not eliminated unless the query is specified
for a finder or select method whose result typgaiga.util.Set. If a query is specified

for a finder or select method whose result typgig. util. Set , but does not specify DIS-
TINCT, the container must interpret the query as if SELECT DISTINCT had been specified. In
general, however, the application developer should specify the DISTINCT keyword when writ-
ing queries for methods that retujava.util.Set

6/25/05

80



Sun Microsystems, Inc.

SELECT Clause

4.8.1

Enterprise JavaBeans 3.0, Public Draft Query Language

Constructor Expressions in the SELECT Clause

4.8.2

A constructor may be used in the SELECT list to return a collection of Java instances. The specified
class is not required to be an entity or to be mapped to the database. The constructor name must be fully
qualified.

If an entity class name is specified in the SELECT NEW clause, the resulting entity instances are in the
new state.

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

Null Values in the Query Result

4.8.3

If the result of an EJB QL query corresponds to a association-field or state-field whose value is null, that
null value is returned in the result of the query method. The IS NOT NULL construct can be used to
eliminate such null values from the result set of the query.

In the case of queries that are associated with finder or select methods for EJB 2.1 entity
beans, if the finder or select method is a single-object finder or select method, and the result set
of the query consists of a single null value, the container must return the null value as the
result of the method. If the result set of a query for a single-object finder or select method con-
tains more than one value (whether non-null, null, or a combination), the container must throw
the FinderException.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot produce

NULL values in the query result. An EJB QL query that returns such a state-field type as a result type
must not return a null value.

Aggregate Functions in the SELECT Clause

The result of an EJB QL query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of an EJB QL query: AVG,
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state-field. The path expression argument to COUNT may terminate in
either a state-field or a association-field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable state-field types (i.e., numeric types, string types, character types, or
date types).

The Java type that is contained in the result of a query using an aggregate function is d&tollows

[21] The rules for finder and select method result types are defined in Section 4.10.1.

81 6/25/05



Sun Microsystems, Inc.

Query Language

4.8.4

Enterprise JavaBeans 3.0, Public Draft SELECT Clause

e COUNT returns Long.

*  MAX, MIN return the type of the state-field to which they are applied.

* AVG returns Double.

* SUM returns Long when applied to state-fields of integral types (other than Biglinteger); Dou-
ble when applied to state-fields of floating point types; Biginteger when applied to state-fields

of type BiglInteger; and BigDecimal when applied to state-fields of type BigDecimal.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is &gplied.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

Examples

The following example returns all line items related to some order:

SELECT |
FROM Order o JOIN o.lineltems |

The following query returns all line items regardless of whether a line item is related to any order or
product:

SELECT | FROM Lineltems AS |

The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’

[22] Itis legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

6/25/05

82



Sun Microsystems, Inc.

ORDER BY Clause Enterprise JavaBeans 3.0, Public Draft Query Language

4.9

The following query returns the total number of orders.

SELECT COUNT(0)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.

SELECT COUNT(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’

Note that this is equivalent to:

SELECT COUNT(l)

FROM Order o JOIN o.lineltems | JOIN o.customer c

WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’
AND I.price IS NOT NULL

ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.
The syntax of the ORDER BY clause is

orderby clause ::= ORDER BY orderby _item {, orderby_item}*
orderby item ::= state_field_path _expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, each element of the SELECT clause of the
guery must be one of the following:

1. an identification variable x, optionally denoted as OBJECT(X)
2. asingle_valued_association_path_expression
3. a state_field_path_expression

In the first two cases, eadlrderby _item must be an orderable state-field of the entity abstract schema
type value returned by the SELECT clause. In the third caseyttezby item must evaluate to the same
state-field of the same entity abstract schema type ast#le field path expression in the SELECT
clause.

83 6/25/05



Sun Microsystems, Inc.

Query Language

4.10

Enterprise JavaBeans 3.0, Public Draft Return Value Types

For example, the first two queries below are legal, but the third and fourth are not.

SELECT o

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, a.zipcode

The following two queries are not legal becausedtderby _itemis not reflected in the SELECT clause
of the query.

SELECT p.product_name

FROM Order o JOIN o.lineltems | JOIN l.product p JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’

ORDER BY p.price

SELECT p.product_name

FROM Order o, IN(o.lineltems) | JOIN o.customer ¢
WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’
ORDER BY o.quantity

If more than oneorderby item is specified, the left-to-right sequence of tbelerby item elements
determines the precedence, whereby the leftardstby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that descend-
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not
specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY clause
is used.

Return Value Types

4.10.1

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state-field type, the result of an aggregate function, the result of a construction operation, or
some sequence of these.

Result types br Finder and Select methods of 2.1 Entity Beans

The following rules apply to EJB 2.x finder and select methods:

6/25/05

84



Sun Microsystems, Inc.

Return Value Types Enterprise JavaBeans 3.0, Public Draft Query Language

How the result type of a query is mapped depends on whether the query is defined for a finder method
on the remote home interface, for a finder method on the local home interface, or for a select method.

* The result type of a query for a finder method must be the entity bean abstract schema type that
corresponds to the entity bean type of the entity bean on whose home interface the finder
method is defined. If the query is used for a finder method defined on the remote home inter-
face of the bean, the result of the finder method is the entity bean’s remote interface (or a col-
lection of objects implementing the entity bean’s remote interface). If the finder method is
defined on the local home interface, the result is the entity bean’s local interface (or a collec-
tion of objects implementing the entity bean’s local interface).

* If the result type of a query for a select method is an entity bean abstract schema type, the
return values for the query method are instances of the entity bean’s local interface or instances
of the entity bean's remote interface, depending on whether the value of the

result-type-mapping deployment descriptor element contained in guery element
for the select method isocal or Remote. The default value foresult-type-mapping
isLocal .

* If the result type of a query used for a select method is an abstract schema type corresponding
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate func-
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

* If the Java type of the cmp-field is an object type and the select method is a sin-
gle-object select method, the result of the select method is an instance of that object
type. If the select method is a multi-object select method, the result is a collection of
instances of that type.

* If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a single-object select method, the result of the select method is that primi-
tive type.

* If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a multi-object select method, the result of the select method is a collection
of values of the corresponding wrappered type (e.g., Integer).

* If the select method query is an aggregate query, the select method must be a single-object
select method.

* The result type of the select method must be a primitive type, a wrappered type, or an
object type that is compatible with the standard JDBC conversion mappings for the
type of the cmp-field [6].

* If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is an object type and there are no values to which the aggre-
gate function can be applied, the select method returns null.

* If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is a primitive type and there are no values to which the
aggregate function can be applied, the container must thro@lectNotFoun-
dException

* If the aggregate query uses the COUNT operator, the result of the select method
should be an exact numeric type. If there are no values to which the COUNT method
can be applied, the result of the select method is 0.

85 6/25/05



Sun Microsystems, Inc.

Query Language

4.11

Enterprise JavaBeans 3.0, Public Draft Bulk Update and Delete Operations

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the query
result is null.

Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to
related entities.

The new_value specified for an update operation must be compatible in type with the state-field to
which it is assigned.

The syntax of these operations is as follows:

update_statement .= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update _item}*
update_item ::= [identification_variable.]state field = new_value
new_value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary

delete_statement ::= delete clause [where_clause]
delete clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a separate transaction or at the begin-
ning of a transaction (before entities have been accessed whose state might be affected by such opera-
tions).

6/25/05

86



Sun Microsystems, Inc.

Null Values

4.12

Enterprise JavaBeans 3.0, Public Draft

Examples:

DELETE
FROM Customer ¢
WHERE c.status = ‘inactive’

DELETE

FROM Customer ¢

WHERE c.status = ‘inactive’
AND c.orders IS EMPTY

UPDATE customer ¢
SET c.status = ‘outstanding’
WHERE c.balance < 10000
AND 1000 > (SELECT COUNT(0)
FROM customer cust JOIN cust.order 0)

Null Values

Query Language

When the target of a reference does not exist in the database, its value is regakl¢idlaSQL 92
NULL semantics [ 4 ] defines the evaluation of conditional expressions contdidlrigvalues.

The following is a brief description of these semantics:

e Comparison or arithmetic operations with a NULL value always yield an unknown value.

* Two NULL values are not considered to be equal, the comparison yields an unknown value.

e Comparison or arithmetic operations with an unknown value always yield an unknown value.

* The IS NULL and IS NOT NULL operators converfNULL state-field or single-valued associ-

ation-field value into the respective TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1

Definition of the AND Operator

AND
T

clm|4f-
c|lm|cc

F
F
F
F

87

6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft Equality and Comparison Semantics

Table 2 Definition of the OR Operator
OR T |F U
T T |T T
T |F U
U T |U U
Table 3 Definition of the NOT Operator
NOT
T F
F T
U U
Note: EJB QL defines the empty string, *, as a string with 0 length, which is not equal to a NULL value.
However, NULL values and empty strings may not always be distinguished when queries are mapped to
some databases. Application developers should therefore not rely on the semantics of EJB QL compari-
sons involving the empty string and NULL value.
4.13 Equality and Comparison Semantics
EJB QL only permits the values tike types to be compared. A typelike another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrappered Java class type equivalent (éng., andinteger are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.
Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
state-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.
Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.
6/25/05 88



Sun Microsystems, Inc.

Restrictions

4.14

Enterprise JavaBeans 3.0, Public Draft Query Language

Restrictions

4.15

Although SQL requires support for fixed decimal comparison in arithmetic expressions, EJB QL does
not. For this reason EJB QL restricts exact numeric literals to those without a decimal point (and numer-
ics with a decimal point as an alternate representation for approximate numeric values).

Boolean comparison is restricted toand<>.

EJB QL does not support the use of comments.

EJB 2.1 entity objects of different types cannot be compared. EJB QL queries that contain such
comparisons are invalid.

Examples

4.15.1

The following examples illustrate the syntax and semantics of EJB QL. These examples are based on
the example presented in Section 4.3.2.

Simple Queries

4.15.2

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o

FROM Order o

WHERE o.shippingAddress.state = ‘CA’
Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) |

89 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft Examples

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
WHERE o.lineltems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineltems IS EMPTY

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems |
WHERE l.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing addresses,
as in Figure 1.

SELECT o

FROM Order o

WHERE

NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Section 4.13. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary key)
is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Development for
the J2EE Platform’:

SELECT DISTINCT o

FROM Order o JOIN o.lineltems |

WHERE l.product.type = ‘book’ AND
I.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

6/25/05

90



Sun Microsystems, Inc.

EJB QL BNF Enterprise JavaBeans 3.0, Public Draft Query Language

4.15.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) |
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the state-field name, i.e., a string.

4.16 EJB QL BNF

EJB QL BNF notation summary:

e {...}grouping

[ ... ] optional constructs

boldface keywords

e *Zzero or more

| alternates

The following is the BNF for EJB QL. This is a superset of EJB QL as defined in [5].

EJB QL ::= select_statement | update_statement | delete _statement
select_statement ::= select_clause from_clause [where_clause] [groupby _clause]

[having_clause] [orderby clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=

FROM identification_variable_declaration

{, {identification_variable _declaration | collection_member_declaration}}*

identification_variable _declaration ::= range_variable _declaration { join | fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
Join ::= join_spec association_path_expression [AS] identification _variable
fetch_join ::= join_spec FETCH association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path _expression
join_spec::= [ LEFT [OUTER] [ INNER ] JOIN
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable
single_valued_path_expression ::=

state_field _path_expression [ single_valued_association_path_expression
state_field _path_expression ::=

91 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft EJB QL BNF

{identification variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}* single valued association_field
collection_valued _path _expression ::=
identification_variable.{single valued association _field.}*collection_valued_association_field
state_field ::= {embedded class state field.}*simple_state field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]state field = new_value
new_value ::=

simple_arithmetic_expression |

string_primary |

datetime_primary |

boolean_primary
delete clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]
select _clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ;=

single_valued_path_expression |

aggregate _select_expression |

identification_variable |

OBJECT (identification_variable) |

constructor_expression
constructor_expression ;=

NEW constructor_name ( constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate select_expression
aggregate_select_expression ::=

{AVG | MAX [MIN [ SUM } ([DISTINCT] state_field path_expression) |

COUNT (/DISTINCT] identification_variable | state field _path expression |

single_valued_association_path _expression)
where_clause ::= WHERE conditional _expression
groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby item ::= state_field path _expression
having_clause ::= HAVING conditional_expression
orderby clause ::= ORDER BY orderby item {, orderby item}*
orderby item ::= state field path expression [ ASC | DESC ]
subquery ::= simple_select clause subquery from_clause [where_clause]

[groupby clause] [having clause]
subquery from_clause ::=

FROM subselect identification variable declaration

{, subselect _identification_variable declaration}*
subselect_identification_variable_declaration ::=

identification_variable _declaration |

association_path_expression [AS] identification_variable |

collection_member_declaration
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
simple_select_expression::=

single_valued_path_expression |

aggregate _select_expression |

identification_variable
conditional _expression :.= conditional _term | conditional _expression OR conditional _term

6/25/05

92



Sun Microsystems, Inc.

EJB QL BNF Enterprise JavaBeans 3.0, Public Draft Query Language

conditional_term ::= conditional _factor | conditional _term AND conditional_factor
conditional_factor ::= [ NOT ] conditional_primary
conditional_primary ::= simple_cond_expression [ (conditional_expression)
simple_cond_expression ;=
comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression
between_expression ;=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND String_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
state_field _path_expression [NOT]IN (in_item {, in_item}* [ subquery)
in_item ::= literal | input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued_path _expression [ input_parameter}1S [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued _path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression
[NOT] MEMBER [OF] collection_valued _path _expression
exists_expression::= [NOT] EXISTS (subquery)
all_or_any expression ::= { ALL [ ANY | SOME} (subquery)
comparison_expression ;=
string_expression comparison_operator {string_expression [ all_or_any expression} |
boolean_expression { =|<>} {boolean _expression | all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression [ all_or_any_expression} |
entity_expression { = [ <> } {entity _expression [ all_or_any expression} |
arithmetic _expression comparison_operator
{arithmetic_expression | all_or_any expression}
comparison_operator ::== [> [>= [< [<= [<>
arithmetic_expression ::= simple_arithmetic_expression [ (subquery)
simple_arithmetic_expression ::=
arithmetic_term | simple_arithmetic _expression { + [ - } arithmetic_term
arithmetic_term :.= arithmetic_factor [ arithmetic_term {* || } arithmetic _factor
arithmetic_factor ::= [{ + [ - }] arithmetic_primary
arithmetic_primary ::=
state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |

93 6/25/05



Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Public Draft

functions_returning_numerics |
string_expression ::= string_primary | (subquery)
string_primary ::=

state_field_path_expression |

string_literal |

input_parameter |

functions_returning_strings |
datetime_expression ;.= datetime_primary | (subquery)
datetime_primary ::=

state_field_path_expression |

input_parameter |

functions_returning_datetime |
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=

state_field_path_expression |

boolean_literal |

input_parameter |
entity_expression ;=

single_valued_association_path_expression |

identification_variable |

input_parameter
functions_returning_numerics::=

LENGTH(string_primary) |

EJB QL BNF

LOCATE(Sstring_primary, string_primary[, simple_arithmetic _expression)) |

ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic _expression) |

MOD(simple_arithmetic_expression, simple_arithmetic_expression) |

SIZE(collection_valued _path _expression)
functions_returning_datetime ::=

CURRENT_DATE/

CURRENT_TIME |/

CURRENT_TIMESTAMP
functions_returning_strings ::=

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM(/[[trim_specification] [trim_character] FROM] string_primary) |

LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

6/25/05

94



Sun Microsystems, Inc.

Entity Managers

Chapter 5

5.1

Enterprise JavaBeans 3.0, Public Draft EntityManager

EntityManager

The lifecycle of an entity manager may be managed by the J2EE container or by the application. The
application may manage the lifecycle of an entity manager in both J2EE and J2SE environments.

Entity Managers

A container-managed entity manager is an entity manager whose lifecycle is managed by the J2EE con-
tainer.

An application-managed entity manager is an entity manager whose lifecycle is managed by the appli-
cation.

Both container-managed and application-managed entity managers are required to be supported in J2EE
web containers and EJB containers. Within an EJB environment, a container-managed entity manager is
typically used.

In J2SE environments, only application-managed entity managers are supported.

95 6/25/05



Sun Microsystems, Inc.

EntityManager

5.2

Enterprise JavaBeans 3.0, Public Draft Obtaining an EntityManager

Obtaining an EntityManager

5.2.1

How an entity manager is obtained depends on whether it is container-managed or application-man-
aged.

When multiple persistence archives are present in the application, the application must designate which
persistence unit to use.

Obtaining a Container-managed Entity Manager

5.2.2

A container-managed entity manager is obtained by the application through dependency injection or
through JNDI lookup, or by callingntityManagerFactory.getEntityManager() . The
container manages the creation of the entity manager and handles the closing of the entity manager
transparently to the application.

Entity managers can be injected using BersistenceContext annotation. If multiple persistence
units exist, theunitName element must be specified. Thge element specifies whether a transac-
tion-scoped or extended persistence context is to be used.

For example,

@PersistenceContext(unitName="order")
EntityManager em;

//here only one persistence unit exists
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager orderEM,;

The INDI lookup of an entity manager is illustrated below:

@Stateless

@PersistenceContext(name="OrderEM", unitName="Order")

public class MySessionBean implements MylInterface {
@Resource SessionContext ctx;

public void doSomething() {

EntityManager em = (EntityManager)
ctx.lookup("OrderEM™);

Obtaining an Application-managed Entity Manager

An application-managed entity manager is obtained by the application from an entity manager factory.

The EntityManagerFactory interface is used to create an entity manager and manage its lifecy-
cle.

6/25/05

96



Sun Microsystems, Inc.

Obtaining an EntityManager Enterprise JavaBeans 3.0, Public Draft EntityManager

5221

5.2.2.2

An entity manager factory provides entity manager instances that are all configured in the same manner
(e.g., configured to connect to the same database, use the same initial settings as defined by the imple-
mentation, etc.).

More than one entity manager factory instance may be available simultaneously in tslavm.

Obtaining an Entity Manager Factory in a J2EE Container
Within a J2EE environment, an entity manager factory may be injected usifgtsestenceUnit
annotation or obtained through JNDI lookup.

For example

@PersistenceUnit
EntityManagerFactory emf;

Obtaining an Entity Manager Factory in a J2SE Environment

Outside a J2EE container environment, jagax.persistence.Persistence class is the
bootstrap class that provides access to an entity manager factory. The application creates an entity man-
ager factory by calling thereateEntityManagerFactory method of thejavax.persis-
tence.Persistence class.

No name needs to be specified in the case where only one persistence unit exists in the application. If a
name is not passed, but multiple persistence units exist, a PersistenceException is thrown.

For example,

EntityManagerFactory emf =
javax.persistence.Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();

[23]

This may be the case when using multiple databases, since in a typical configuration a single entity manager only @smmunicat
with a single database.

97 6/25/05



Sun Microsystems, Inc.

EntityManager

Enterprise JavaBeans 3.0, Public Draft Obtaining an EntityManager

5.2.2.3 The EntityManagerFactory Interface

The EntityManagerFactory interface is the interface used by the application to obtain entity
managers. When the application has finished using the entity manager factory, and/or at application
shutdown, the application should close the entity manager factory.

public interface javax.persistence.EntityManagerFactory {

/**

* Create a new EntityManager of PersistenceContextType. TRANSAC-

*
* The isOpen method will return true on the returned instance.
*

* This method returns a new EntityManager instance (with a new
* persistence context) every time it is invoked.

*/

EntityManager createEntityManager();

/**
* Create a new EntityManager of the specified
* PersistenceContextType.
* The isOpen method will return true on the returned instance.
* This method returns a new EntityManager instance (with a new
* persistence context) every time it is invoked.
*
/
EntityManager createEntityManager(PersistenceContextType type);

/**
* Get the container-managed EntityManager bound to the
* current JTA transaction.
* |f there is no persistence context bound to the current
* JTA transaction, a new persistence context is created and
* associated with the transaction.
* |f there is an existing persistence context bound to
* the current JTA transaction, it is returned.
* |If no JTA transaction is in progress, an EntityManager
* instance is created that will be bound to subsequent
* JTA transactions.
* Throws lllegalStateException if called on an
* EntityManagerFactory that does not provide JTA EntityManagers.
*
/

EntityManager getEntityManager();

/**

* Close this factory, releasing any resources that might be

* held by this factory. After invoking this method, all methods
* on the EntityManagerFactory instance will throw an

* |llegalStateException, except for isOpen, which will return
* false.

*

void close();

/**

* Indicates whether or not this factory is open. Returns true
* until a call to close has been made.

*

public boolean isOpen();

6/25/05

98



Sun Microsystems, Inc.

Obtaining an EntityManager Enterprise JavaBeans 3.0, Public Draft EntityManager

5.224

The following example illustrates the creation of an EntityManagerFactory, and its use in creating and
using a resource-local EntityManadfet.

import javax.persistence.*;

public class PasswordChanger {
public static void main (String[] args) {

EntityManagerFactory emf =
Persistence.createEntityManagerFactory();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();
user = em.createQuery
("SELECT u FROM User u WHERE u.name=:name AND
u.pass=:pass")
.setParameter("name", args[0])
.setParameter("pass", args[1])
.getSingleResult();

if (user!=null)
user.setPassword(args[2]);

em.getTransaction().commit();

em.close();
emf.close ();

Configuration information needed for the creation of an EntityManagerFactory is described in Chapter
6, “Entity Packaging”.

Control of the Application-Managed EntityManager Lifecycle.

The EntityManager methoddose andisOpen are used to manage the lifecycle of an applica-
tion-managed entity manager.

The EntityManager.close method closes an entity manager to release its resourceslddee
method must only be invoked when a transaction is not active. The close method must not be invoked on
a container-managed entity manager or on an entity manager that has been closed.

The EntityManager.isOpen method indicates whether the entity manager is open.iS@pen
method will return true unless the entity manager has been closed.

[24]

Resource-local entity managers are described in Section 5.3.2.

99 6/25/05



Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Public Draft Controlling Transactions

5.3 Controlling Transactions

Transactions involving EntityManager operations may controlled either through JTA or through use of a
resource-localEntityTransaction API, which is mapped to a resource transaction over the
resource that underlies the entities managed by the entity manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—at the
time its underlying entity manager factory is configured and created.

Both JTA entity managers and resource-local entity managers are required to be supported in J2EE web

containers and EJB containers. Within an EJB environment, a JTA entity manager is typically used. In
J2SE environments, only resource-local entity managers are supported.

5.3.1 JTA EntityManagers

An entity manager whose transactions are controlled through JTA is termed a JTA entity manager. A
JTA entity manager participates in the current JTA transaction, which is begun and committed external
to the entity manager and propagated to the underlying resource manager.

Container-managed entity managers can only be JTA entity managers. JTA entity managers are only
specified for use in J2EE containers.

5.3.2 Resource-local EntityManagers

An entity manager whose transactions are controlled by the application througintibgel'rans-

action APl is termed a resource-local entity manager. A resource-local entity manager transaction is
mapped to a resource transaction over the resource by the persistence provider. Resource-local entity
managers may use server or local resources to connect to the database and are unaware of the presence
of JTA transactions that may or may not be active.

Application-managed entity managers may be either JTA entity managers or resource-local entity man-
agers.

6/25/05 100



Sun Microsystems, Inc.

Persistence Contexts

Enterprise JavaBeans 3.0, Public Draft

5.3.2.1 The EntityTransaction Interface

The EntityTransaction
managers. Th&ntityManager getTransaction

interface.

public interface EntityTransaction {

/**

* Start a resource transaction.

* Throws lllegalStateException if isActive() is true.
*/

public void begin();

/**

* Commit the current transaction, writing any unflushed
* changes to the database.
* @throws lllegalStateException if isActive() is false.
* @throws PersistenceException if the commit fails.
*
/
public void commit();

/**

* Roll back the current transaction.

* @throws lllegalStateException if isActive() is false.
*/

public void rollback();

/**

* Check to see if a transaction is in progress.

*

public boolean isActive();

5.4 Persistence Contexts

EntityManager

interface is used to control resource transactions on resource-local entity
method returns th&ntityTransaction

As described in chapter 3, a persistence context is a set of entity instances in which for any persistent
entity identity there is a unique entity instance. Within the persistence context, the entity instances and
their lifecycle are managed by the entity manager.

A persistence context may be either a transaction-scoped persistence context or an extended persistence

context.

A persistence context is either container-managed or application-managed, as described further below.

Examples of persistence context use are given in Section 5.5.

5.4.1 Container-managed Rersistence Contexts

A container-managed persistence context is always associated with a container-managed entity man-

ager. The lifecycle of the persistence context is managed automatically by the container.

101

6/25/05



Sun Microsystems, Inc.

EntityManager

5411

5.4.1.2

54.2

Enterprise JavaBeans 3.0, Public Draft Persistence Contexts

Container-managed Transaction-scoped Persistence Context
A new persistence context begins when a container-manager entity manager is invoked in the scope of
an active JTA transaction, and there is no current persistence context already associated with the JTA
transaction. The persistence context is created and then associated with the current JTA transaction.
The persistence context ends when the associated JTA transaction completes, and all entities that were
managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, a persistence context is created and
destroyed to service the method call only, and any entities loaded from the database will immediately
become detached at the end of the method call.

Container-managed Extended Persistence Context
An extended persistence context exists from the point at which the container-managed entity manager
has been obtained by dependency injection or through JNDI lookup until it is closed by the container.
Such an extended persistence context can only be used within the scope of a stateful session bean and is
closed by the container when t@Removenmethod of the stateful session bean completes (or the state-
ful session bean instance is otherwise destroyed).

When an extended persistence context is used, the entities managed by the EntityManager remain man-
aged after a JTA transaction commits. They do not become detached until the persistence context ends.

Application-managed Rersistence Contexts

5421

An application-managed persistence context is always associated with an application-managed entity
manager. When the persistence context is application managed, the application interacts directly with

the persistence provider's entity manager factory to obtain and destroy persistence contexts by means of
the EntityManagerFactory.createEntityManager() and EntityMan-

ager.close() operations , and transaction APIs.

Application-managed Transaction-scoped Persistence Context

For a JTA entity manager with transaction-scoped persistence context, a new persistence context begins
when the entity manager is invoked in the scope of an active JTA transaction, and there is no current
persistence context already associated with the entity manager. This persistence context is associated
with the entity manager instance. The persistence context ends when the associated JTA transaction
completes, and all entities that were managed by the EntityManager become detached. If the entity
manager is invoked outside the scope of a transaction, a persistence context is created and destroyed to
service the method call only, and any entities loaded from the database will immediately become
detached at the end of the method call.

For a resource-local entity manager, a new persistence context begins whenever a new resource transac-
tion is started vi€&ntityManagerTransaction.begin() . The persistence context ends when

the resource transaction ends, and all entities that were managed by the EntityManager become
detached. If the entity manager is invoked outside the scope of a transaction, a persistence context is
created and destroyed to service the method call only, and any entities loaded from the database will
immediately become detached at the end of the method call.

6/25/05

102



Sun Microsystems, Inc.

Persistence Contexts Enterprise JavaBeans 3.0, Public Draft EntityManager

5.4.2.2 Application-managed Extended Persistence Context

5.4.3

In the case of an application-managed entity manager with extended persistence context (whether a JTA
or resource-local entity manager), the extended persistence context exists from the point at which the
entity manager has been created until the entity manager is closed, ustqtitydlanagerFac-
tory.createEntityManager() and EntityManager.close() APIs for the management

of the entity manager lifecycle.

When an extended persistence context is used, the entities managed by the EntityManager remain man-

aged after the JTA transaction or resource-local transaction commits. They do not become detached
until the persistence context ends.

Persistence Context Popagation

For container-managed persistence contexts, a single persistence context may correspond to one or
more JTA entity manager instances.

Persistence context propagation does not apply to application-managed persistence contexts.

In the case of container-managed persistence contexts of BgwesistenceContext-
Type.TRANSACTION, the propagation of a JTA transaction causes the propagation of the managed
persistence context across the entity managers that are accessed in the same transactiof3 context.

Entity managers in different JTA transactions do not share the same persistence context.

Entity managers obtained from different entity manager factories never share the same persistence con-
text.

5.4.3.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts

The application may obtain a container-managed JTA entity manager with persistence context of type
PersistenceContextType. TRANSACTION bound to the JTA transaction by injection or JNDI
lookup, or by callingyetEntityManager() on a JTA entity manager factory.

In either case, the returned entity manager accesses a persistence context bound to the JTA transaction:

* If the entity manager is called when no JTA transaction is in progress, a persistence context is
created and destroyed to service the method call only, and any entities loaded from the data-
base will immediately become detached at the end of the method call.

* If the entity manager is called and there is no persistence context associated with the current
JTA transaction, a new persistence context will be created and bound to the JTA transaction,
and the call will take place in that context.

* If the entity manager is called and there is an existing persistence context bound to the current
JTA transaction, the call takes place in that context.

[25] Note that these entity managers are associated with the same entity manager factory. See Section 5.6.

103 6/25/05



Sun Microsystems, Inc.

EntityManager

Enterprise JavaBeans 3.0, Public Draft Persistence Contexts

5.4.3.2 Persistence Context Propagation Rules for Extended Persistence Contexts

The application may obtain a container-managed JTA entity manager with persistence context of type
PersistenceContextType.EXTENDED bound to a stateful session bean instance by injection or
JNDI lookup.

The following rules apply when the persistence context type of a container-managed entity manager is
EXTENDED

* If a component with a transaction-scoped persistence context calls a stateful session bean with
an extended persistence context in the same JTA transaction, an lllegalStateException is
thrown.

* If a stateful session bean with an extended persistence context calls a stateless session bean or
a stateful session bean with a transaction-scoped persistence context in the same JTA transac-
tion, the persistence context is propagated.

* If a stateful session bean with an extended persistence context calls a stateless or stateful ses-
sion bean in a different JTA transaction context, the persistence context is not propagated.

* |f a stateful session bean with an extended persistence context instantiates another stateful ses-
sion bean with an extended persistence context, the extended persistence context is inherited
by the second stateful session bean. If the second stateful session bean is called with a differ-
ent transaction context than the first, an lllegalStateException is thrown.

» [f a stateful session bean with an extended persistence context calls a stateful session bean with
a different extended persistence context in the same transaction, an lllegalStateException is
thrown.

In general, an exception is thrown if there are two different extended persistence contexts for the same
EntityManagerFactory in the same transaction.

6/25/05

104



Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

5.5 Examples

5.5.1 Container-managed Tansaction-scoped Brsistence Context

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext EntityManager em;

public Order getOrder(Long id) {
return em.find(Order.class, id);

public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name"”, name)

.getSingleResult();
}
public Lineltem createLineltem(Order order, Product product, int
quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
return li;
}

105 6/25/05



Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

5.5.2 Container-managed Extended Brsistence Context

@ Stateful
@Transaction(REQUIRES_NEW)
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)
EntityManager em;

private Order order;
private Product prod;

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return li;

6/25/05

106



Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

5.5.3 Application-managed Tansaction-scoped Brsistence Context (JA)

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init() {

em = emf.createEntityManager();
}

public Order getOrder(Long id) {
return em.find(Order.class, id);

public Product getProduct() {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createlLineltem(Order order, Product product, int
quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
return li;

}

@PreDestroy
public void destroy() {
em.close();

107 6/25/05



Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

5.5.4 Application-managed Extended Brsistence Context(JA)

@ Stateful
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;
private Product prod;

@PostConstruct
public void init() {
em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);
}

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return [i;

@Remove
public void destroy() {
em.close();

6/25/05 108



Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Public Draft EntityManager

5.5.5 Application-managed Tansaction-scoped Brsistence Context (Resouwe

Transaction)

public class ShoppingCart {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager();

}

public Order getOrder(Long id) {
return em.find(Order.class, id);
}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)

.getSingleResult();
}
public Lineltem createLineltem(Order order, Product product, int
quantity) {
em.getTransaction().begin();
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
em.getTransaction().commit();
return li;
}
public void destroy() {
em.close();
emf.close();

109 6/25/05



Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Public Draft Examples

5.5.6 Application-managed Extended [Brsistence Context (Resowe Transaction)

public class ShoppingCart {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);
}

private Order order;
private Product prod;

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
em.getTransaction().begin();

Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);

em.getTransaction().commit();

return li;

}

public void destroy() {
em.close();
emf.close();

6/25/05 110



Sun Microsystems, Inc.

Requirements on the Container Enterprise JavaBeans 3.0, Public Draft EntityManager

5.6

Requirements on the Container

5.6.1

Persistence Context Management

5.6.2

For application managed persistence contexts, the application interacts directly with the persistence pro-
vider and uses th&ntityManagerFactory and EntityManager  APIs to create and destroy
persistence contexts. For container managed persistence contexts, the container might use these same
APIs or might use its own internal APIs; however, the container is required to support third-party persis-
tence providers. The APIs for the support of third-party persistence providers are described further in
Chapter 7.

Persistence contexts are always associated with an entity manager factory. In the following, everywhere
that "the persistence context" appears, it should be understood to mean "the persistence context associ-
ated with a particular entity manager factory".

Outside the container environment, the application creates an entity manager factory explicitly by call-
ing Persistence.createEntityManagerFactory() . Inside the container environment, the
container instantiates the entity manager factory and exposes it to the application via JNDI. The con-
tainer might use internal APIs to create the entity manager factory, or it mighPesssten-
ceProvider.createContainerEntityManagerFactory() . However, the container is
required to support third-party persistence providers, and in this case, the container mustRese the
sistenceProvider.createContainerEntityManagerFactory() call to create the

entity manager factory and must calhtityManagerFactory.close() to destroy the entity
manager factory prior to shutdown.

Container Managed Rersistence Contexts

When operating in a container environment, the container is responsible for managing the lifecycle of
persistence contexts, and injectiigtityManager  references into web components and session
bean and message-driven bean components.

The container:

* Begins a new persistence context of typersistenceContextType. TRANSACTION
whenever invocation of a business method of a component using an entity manageemwith
sistenceContextType. TRANSACTION , results in the beginning of a new JTA transac-
tion

* Associates that persistence context with the JTA transaction, so that subsequent local business
methods which occur in the same JTA transaction also propagate the persistence context

* Ends the persistence context when the JTA transaction completes
The container also:

* Begins a new persistence context of tfpersistenceContextType.EXTENDED when-
ever a stateful session bean using an entity manager RétsistenceContext-
Type.TRANSACTION is created outside the scope of a JTA transaction and associates that
persistence context with the stateful session bean instance

111 6/25/05



Sun Microsystems, Inc.

EntityManager

Enterprise JavaBeans 3.0, Public Draft Requirements on the Container

* Associates the persistence context with the current JTA transaction whenever a business
method of the stateful bean is invoked, so that

* subsequent local business methods which occur in the same JTA transaction also
propagate the persistence context

* instantiations of stateful session beans with entity managersReithistence-
ContextType.EXTENDED associate the persistence context with the new
instance of the stateful bean

* Ends the persistence context when the bean is removed

The container is responsible for associating &mgityManager  references injected into compo-
nents with the managed persistence context before invoking a business method of the component. The
container must also make the managed persistence context available via JNDI lookup .

The rules above can result in "persistence context duplication", where a persistence context associated
with the JTA transaction is not the same as the persistence context associated with a stateful bean which
is being invoked in the context of that transaction. (See Section 5.4.3 above). For example, this could
happen if a business method annotafeahsaction(REQUIRED)  of a stateful session bean using a
persistence context of typeersistenceContextType.EXTENDED was called from a stateless
session bean. The container must detect persistence context duplication and throw the lllegalStateEx-
ception.

When operating with a third-party persistence provider, the container usEstihgManagerFac-
tory/EntityManager contract defined above to create and destroy persistence contexts. It is unde-
fined whether a new entity manager instance is created for every persistence context, or whether entity
manager instances are sometimes reused. Exactly how the container maintains the association between
persistence context and JTA transaction is not defined. The container may maintain this association
internally, or it may delegate this concern to the persistence provider by gsitkmtityMan-

ager() to obtain the provider's current entity manager.

6/25/05

112



Sun Microsystems, Inc.

Persistence Unit

Chapter 6

6.1

Enterprise JavaBeans 3.0, Public Draft Entity Packaging

Entity Packaging

This chapter describes the packaging of persistence units.
The persistence archive file is used to package a persistence unit in J2EE.
In J2SE environments, the metadata mapping files, jar files, and classes described in this chapter are

used. The persistence archive file may be used, or the metadata mapping files, jar files, and classes may
be packaged in accordance with requirements imposed by the persistence provider.

Persistence Unit

A persistence unit is a logical grouping that includes:
* A named entity manager together with its provider and configuration information
* The set of managed classes included in the persistence unit for the specified entity manager

* Mapping metadata (in the form of metadata annotations and/or XML) that specifies the map-
ping of the classes to the database

113 6/25/05



Sun Microsystems, Inc.

Entity Packaging

6.2

Enterprise JavaBeans 3.0, Public Draft Persistence Archive

Persistence Archive

6.2.1

Within J2EE, the persistence archive,.par file, is the packaging artifact or deployment vehicle for
persistence units. Each persistence archive houses a single persistence unit.

Persistence archives may be referenced by J2EE application metadata. If specifiedpplitee
tion.xml , persistence archives are listed as follows:

<application>
<module>
<persistence>orderEntities.par</persistence>
</module>
</application>

Any number of persistence archives may be deployed within a J2EE application (EAR). All persistence
archives used by the application must be accessible to all other J2EE components in the application—
i.e. loaded by the application classloader—such that if the same entity class is referenced by two differ-
ent J2EE components (which may be using different persistence units), the referenced class is the same
identical class.

persistence.xml file

The configuration information for the entity manager and its entity manager factory, the managed
classes included in the persistence unit, and the object/relational mapping information for a persistence
unit are defined in @ersistence.xml file located in theMETA-INF directory of the persistence
archive. This information may be defined by containment or by reference, as described below.

The object/relational mapping information may take the form of annotations on the classes included in
the persistence archive, one or more XML files contained in the persistence archive, one or more XML
files outside the persistence archive on the classpath and referenced from the persistence archive, or a
combination of these.

The classes may either be contained within the persistence archive; or they may be specified by refer-
ence—i.e., by naming the classes, class archives, or mapping XML files (which in turn reference
classes) that are accessible on the application classpath; or they may be specified by some combination
of these means.

The entity-manager element consists of the following sub-element&ime, provider |,
jta-data-source , hon-jta-data-source , mapping-file , jar-file , class , prop-
erties

The semantics of the elements are as described below.

6/25/05

114



Sun Microsystems, Inc.

Persistence Archive Enterprise JavaBeans 3.0, Public Draft Entity Packaging

6.2.1.1

6.2.1.2

6.2.1.3

6.2.1.4

For example:

<entity-manager>
<name>eml</name>
<provider>com.acme.persistence</provider>
<jta-data-source>jdbc/MyDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
<properties>

<property name="sql-logging" value="on"/>
</properties>
</entity-manager>

name
Every entity manager must have a name. If no name is specified for an entity manager, the name of its
containing persistence archive is used (withoutphe extension).

For example, if thgersistence.xml file is contained irorderEntities.par and no name is
specified for the entity manager, the entity manager's name weittleeEntities

provider
The provider element specifies the name of the persistence provigavax.persis-
tence.spi.PersistenceProvider class. Theprovider element must be specified if a

third-party persistence provider implementation is used.

jta-data-source, non-jta-data-source

The jta-data-source and non-jta-data-source elements are used to specify the global

JNDI name of the JTA and/or non-JTA data sources respectively. These elements name the data sources
in the local environment; the format of these names and the ability to specify the names are product spe-
cific (e.g., they might be provided by other means).

mapping-file, jar-file, class
The set of classes that are managed by a persistence unit is defined by using one or more of the follow-
ing:[26]
* One or more object/relational mapping XML files
* One or more jar files that will be searched for classes

* An explicit list of the classes

* The classes contained in the persistence archive

[26] Note that an individual class may be used in more than one persistence unit.

115 6/25/05



Sun Microsystems, Inc.

Entity Packaging

6.2.1.5

6.2.1.6

Enterprise JavaBeans 3.0, Public Draft Persistence Archive

An object/relational mapping XML file contains the mapping information for the classes listed init. An
entity-mappings.xml file may be specified in thRlIETA-INF directory in the persistence archive

or one or more mapping files may be referenced by thapping-file elements of the
entity-manager element. If a mapping file is specified, the classes and mapping information spec-
ified in the mapping file will be used. If multiple mapping files are specified (possibly including an
entity-mappings.xml file), the resulting mappings are obtained by combining the mappings from
all of the files. The result is undefined if multiple mapping files referenced within a single persistence
unit contain overlapping mapping information for any given class. The object/relational mapping infor-
mation contained in any mapping file referenced within the persistence unit must be disjoint at the
class-level from object/relational mapping information contained in any other such mapping file.

One or more JAR files may be specified instead of, or in addition to the mapping files. If specified, these
JAR files will be searched for entity and embedded classes, and any mapping metadata annotations
found on them will be processed, or they will be mapped using the mapping annotation defaults defined
by this specification.

A list of named entity and embedded classes may also be specified instead of, or in addition to, the JAR
files and mapping files. Any mapping metadata annotations found on these classes will be processed, or
they will be mapped using the mapping annotation defaults.

All classes contained in the persistence archive itself are also searched for entity and embedded classes
and any mapping metadata annotations found on them will be processed, or they will be mapped using
the mapping annotation defaults.

The resulting set of entities managed by the persistence unit is the union of these four sources, with the
mapping metadata annotations (or annotation defaults) for any given class being overridden by the
XML mapping information file if there are both annotations as well as XML mappings for that class.
The level of overriding is at the level of the class: if a class is mapped using XML, all of its mapping
information must be specified using XML or none of it must be.

All classes must be on the application classpath to ensure that entity managers from different persis-
tence units that map the same class will be accessing the same identical class.

properties
The properties element is used to specify vendor-specific properties that apply to the persistence
unit and its entity manager factory configuration.

Entries that make use of the namesppa@x.persistence and its subnamespaces must not be
used for vendor-specific information. All names containjagax.persistence are reserved for
future use by this specification.

Examples
The following are sample contents oparsistence.xml file. Assume that this file is located in the
META-INF directory of arorderEntities.par persistence archive.

6/25/05

116



Sun Microsystems, Inc.

Persistence Archive Enterprise JavaBeans 3.0, Public Draft Entity Packaging

Example 1:

<entity-manager>
</entity-manager>

A persistence unit is created for entity managers nardatEntities

If a META-INF/entity-mapping.xml file exists, any classes referenced by it and mapping infor-
mation contained in it are used as specified above. Any annotated entity and embedded classes found in
theorderEntities.par archive are also added to the list of managed classes.

Example 2:

<entity-manager>
<name>EM-2<name>
<mapping-file>mappings.xml</mapping-file>
</entity-manager>

A persistence unit is created for entity managers naBldeR. The mappings.xml  resource exists

on the classpath and any classes and mapping information contained in it are used. Any annotated
entity and embedded classes found in dhderEntities.par archive are also added to the list of
managed classes. [fMETA-INF/entity-mappings.xml file exists, any classes and mapping
information contained in it are used as well.

Example 3:

<entity-manager>
<name>EM-3</name>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</entity-manager>

A persistence unit is created for entity managers nambd3. If a META-INF/entity-map-
pings.xml  file exists then any classes and mapping information contained in it are used. The

order.jar and order-supplemental.jar are searched for entity and embedded classes and
any annotated classes found are added. Any annotated entity and embedded classes found in the
orderEntities.par archive are also added to the list of managed classes.

Example 4:

<entity-manager>
<name>EM-4</name>
<mapping-file>order-mappings.xml</mapping-file>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.ltem</class>
</entity-manager>

A persistence unit is created for entity managers naEie4. Theorder-mappings.xmi is read

as a resource and any classes referenced by it and mapping information contained in it are used. The
annotatedOrder , Customer andltem classes are loaded and are added. (Note that explicitly enu-
merated classes must also be annotated). Any annotated entity and embedded classes found in the
orderEntities.par archive are also added to the list of managed classes.

117 6/25/05



Sun Microsystems, Inc.

Entity Packaging

6.2.2

Enterprise JavaBeans 3.0, Public Draft Deployment

Example 5:

<entity-manager>
<name>EM-5</name>
<mapping-file>orderl.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.par</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</entity-manager>

A persistence unit is created for entity managers naBMeb. Theorderl.xml andorder2.xml

files are read as resources and any classes referenced by them and mapping information contained in
them are used. Therder.par is another persistence archive on the classpath, whiler-sup-
plemental.jar is just a library of classes. Both of these are searched for entity classes and any
annotated classes found are added to the list of managed classes. Any annotated entity classes found in
theorderEntities.par archive are also added.

Default EntityManager

Any persistence archive that exists in the application but does not conparsistence.xml file

will have a persistence unit configured using the default values. This is equivalent to specifying an
empty entity-manager element in gpersistence.xml file in the archive. This means that it

will use the default name (persistence archive name minus the extension)gntibyemap-

pings.xml  mapping file, if any, that is contained in the persistence archive; and the annotated entity
and embedded classes contained in the persistence archive.

6.3 Deployment
The persistence archive is either specifiedaplication.xml or discovered through J2EE EAR
processing. When the container findspar file it looks for META-INF/persistence.xml file

and processes the persistence unit definition that it contains. MEBA-INF/persistence.xml
is found, a default persistence unit configuration is created as specified above.

6/25/05

118



Sun Microsystems, Inc.

J2EE Container Deployment Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

e CONtalner and Provider Contracts for
Deployment and Bootstrapping

This chapter defines requirements on the J2EE container and on the persistence provider for deployment
and bootstrapping.

7.1 J2EE Container Deployment

Persistence archives are deployed into the container in the form of persistence archive filas, or
files. Each persistence archive file may contain zero orpaneistence.xml file, any number of
mapping files and any number of class files.

7.1.1 Responsibilities of the Container

At deployment time the container is responsible for discovering the persistence archives and processing
any persistence.xml files in them. The container must also apply any defaults including:

* EntityManager name

* entity-mapping.xml mapping file

119 6/25/05



Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft J2EE Container Deploy-

* set of managed classes
The defaults for these are described in Chapter 6.

The container may optionally add its own container-defaulted rules and values for such properties as the
persistence provider, the data source, or any container-specific properties.

Once the container has read the persistence metadata, it determines the priavideryersis-

tence.spi.PersistenceProvider implementation class for each deployed named EntityMan-
ager. It creates an instance of this implementation class and invokes the
createContainerEntityManagerFactory method on this instance. The metadata is passed

into the persistence provider as part of this call. This occurs once for each named EntityManager config-
uration.The factory obtained will be used by the container to create container-managed EntityManagers.
Only one EntityManagerFactory may be created for each hamed EntityManager configuration. Any
number of EntityManager instances may be created from a given factory.

When a persistence archive is redeployed then the container must catkk#teContainerEnti-
tyManagerFactory method again, with the required metadata, to indicate the deployment.

7.1.2 Responsibilities of the Rrsistence Povider

The persistence provider must implement BersistenceProvider SPI and be able to process

the metadata that is passed to it at the tareateContainerEntityManagerFactory method

is called. An instance dEntityManagerFactory is created and the metadata for the named Enti-
tyManager is associated with the factory. The factory is then returned to the container. The factory
instance must implemejgvax.naming.Referenceable

6/25/05 120



Sun Microsystems, Inc.

J2EE Container Deployment Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

7.1.3 javax.persistence.spi.BrsistencePovider

The interfacgavax.persistence.spi.PersistenceProvider is implemented by the per-
sistence provider, and is specified in tpersistence.xml file in the persistence archive. It is
invoked by the container when it needs to create an EntityManagerFactory, or [avéxeper-
sistence.Persistence class when running outside the container.

package javax.persistence.spi;
/**

* Interface implemented by a persistence provider.
* The implementation of this interface that is to
* be used for a given EntityManager is specified in
* persistence.xml file in the persistence archive.
* This interface is invoked by the Container when it
* needs to create an EntityManagerFactory, or by the
* Persistence class when running outside the Container.
*
/
public interface PersistenceProvider {

/**

* Called by Persistence class when an EntityManagerFactory
* is to be created.
*

* @param emName The name of the EntityManager configuration
* for the factory
* @param map A Map of properties that may be used by the
* persistence provider
* @return EntityManagerFactory for the named EntityManager,
* or null if the provider is not the right provider
*
/
public EntityManagerFactory createEntityManagerFactory(String
emName, Map map);

/**

* Called by the container when an EntityManagerFactory

* is to be created.

*

* @param info Metadata needed by the provider

* @return EntityManagerFactory for the named EntityManager

*

public EntityManagerFactory createContainerEntityManagerFac-
tory(Persistencelnfo info);

121 6/25/05



Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft

7.1.4 javax.persistence.spi.Brsistencelnb Interface
package javax.persistence.spi;

import javax.sql.DataSource;

/**
* Interface implemented and used by the Container to pass
* persistence metadata to the persistence provider as part of
* the createContainerEntityManagerFactory() call. The provider
* will use this metadata to obtain the mappings and initialize
* its structures.
*
public interface Persistencelnfo {

/**

* @return The name of the EntityManager that is being created.
* Corresponds to the <name> element in persistence.xml
*/

public String getEntityManagerName();

/**
* @returns The name of the persistence provider implementation

* class.
* Corresponds to the <provider> element in persistence.xml
*

public String getPersistenceProviderClassName();

/**

* @return the JTA-enabled data source to be used by the

* persistence provider.

* The data source corresponds to the named <jta-data-source>
* element in persistence.xml

*

public DataSource getJtaDataSource();

/**
* @return The non-JTA-enabled data source to be used by the
* persistence provider when outside the container, or inside
* the container when accessing data outside the global
* transaction.
* The data source corresponds to the named <non-jta-data-source>
* element in persistence.xml
*
/

public DataSource getNonJtaDataSource();

/**
* @return The list of mapping file names that the persistence
* provider must load to determine the mappings for the entity
* classes. The mapping files must be in the standard XML
* mapping format, be uniquely named and be resource-loadable
* from the application classpath. This list will not include
* the entity-mappings.xml file if one was specified.
* Each mapping file name corresponds to a <mapping-file>
* element in persistence.xml
*
/
public List<String> getMappingFileNames();

/**

* @return The list of JAR file URLs that the persistence

J2EE Container Deploy-

6/25/05 122



Sun Microsystems, Inc.

Bootstrapping in J2SE Environments Enterprise JavaBeans 3.0, Public Draft Container and Provider Contracts for Deploy-

* provider must look in to find the entity classes that must

* be managed by EntityManagers of this name. The persistence
* archive jar itself will always be the last entry in the

* list. Each jar file URL corresponds to a named <jar-file>

* element in persistence.xml

*

/

public List<URL> getJarFiles();

/**

* @return The list of class names that the persistence

* provider must inspect to see if it should add it to its

* set of managed entity classes that must be managed by
* EntityManagers of this name.

* Each class name corresponds to a hamed <class> element
* in persistence.xml
*/

public List<String> getEntityClassNames();

/**

* @return Properties object that may contain vendor-specific
* properties contained in the persistence.xml file.

* Each property corresponds to a <property> element in
*persistence.xml

*

/

public Properties getProperties();

/**

* @return ClassLoader that the provider may use to load any
* classes, resources, or open URLS.

*/

public ClassLoader getClassLoader();

/**

* @return URL object that points to the persistence.xml

* file; useful for providers that may need to re-read the

* persistence.xml file. If no persistence.xml

* file is present in the persistence archive, null is

* returned.

*/

public URL getPersistenceXmlFileUrl();

/**

* @return URL object that points to the entity-mappings.xml
* file.

* |f no entity-mappings.xml file was present in the persistence
* archive,null is returned.

*

public URL getEntityMappingsXmlFileUrl();

7.2 Bootstrapping in J2SE Environments

In J2SE environments (outside the J2EE container)Pthsistence.createEntityManager-
Factory callis used by the application to create an entity manager factory. To find the provider for the
named EntityManager configuration theersistence  class does the following:

123 6/25/05



Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Public Draft Bootstrapping in J2SE

* Looks up all of the persistence provider services that exist on the context classpath.

* Instantiates each of the provider classes and involeste EntityManagerFactory on
the providers until one of the calls returns an EntityManagerFactory instance.

* Returns the factory or an error if none was able to be obtained from the known providers.

Persistence providers may require that all persistence archives contain persistence.xml files. The persis-
tence provider is responsible for discovering all of peesistence.xml files in the.par files and
processes them in order to discover the providers for all of the archives. Persistence providers may also
require that the set of entity classes and classes that are to be managed must be fully enumerated in each
of the persistence.xml files.

6/25/05 124



Sun Microsystems, Inc.

Entity

Chapter 8

8.1

Enterprise JavaBeans 3.0, Public Draft Metadata Annotations

Metadata Annotations

This chapter and chapter 9 define the metadata annotations introduced by this specification.
The XML schema defined in chapter 10 provides an alternative to the use of metadata annotatations.

These annotations are in the packgyax.persistence

Entity

The Entity  annotation specifies that the class is an entity. This annotation is applied to the entity
class.

The name annotation element defaults to the unqualified name of the entity class. This name is used to
refer to the entity in queries. The name must not be a reserved literal in EJB QL.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {

String name() default ",

AccessType access() default PROPERTY;

125 6/25/05



Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft Callback Annotations

8.2

The enumAccessType is used to specify whether the persistence provider runtime uses properties or
fields to access the entity state. ThecessType for an entity class determines whether its
object/relational mapping annotations are applied to its property methods or to its instance variables.

public enum AccessType {
PROPERTY,
FIELD

Callback Annotations

The EntityListener annotation specifies the callback listener class to be used for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListener {
Class value();

The following annotations are used to specify callback methods for the corresponding lifefcycle events.
These annotations may be applied to methods on the entity class or methods of the EntityListener class.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

@Target{METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

@Target{METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}

6/25/05

126



Sun Microsystems, Inc.

Annotations for Queries Enterprise JavaBeans 3.0, Public Draft Metadata Annotations

8.3 Annotations for Queries

8.3.1 Flush Mode Annotation

[Note to readers] The semantics and applicability points of tRdushMode annotation are still currently
undergoing review.

The FlushMode annotation is used on a client component to designate whether entities should be
flushed to the database as part of a query or a method’s behavior. For examplastiiddode anno-

tation can be used to control whether or not queries return entities that have been made persistent or
removed in the current transaction.

@Target{TYPE}) @Retention(RUNTIME)
public @interface FlushMode {
FlushModeType value();

public enum FlushModeType {
COMMIT,
AUTO,
NEVER

}

FlushMode(AUTO) will cause flushes to occur at commit and before query execuktrsh-
Mode(COMMIT) will cause flush to occur only at transaction commit; the persistence provider runtime
is permitted to flush before query execution.

FlushMode(NEVER) will cause changes not to be written to the database unlesfuti®)
method is called.

8.3.2 NamedQuery Annotation

The NamedQuery annotation is used to specify a named EJB QL query.Wdrae element is used to
refer to the query when using the EntityManager methods that create query objects.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {

String name();

String queryString();

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQueries {
NamedQuery [] value ();

[Note to readers] Means for handling application-level metadata is still under discussion. We would like to be
able to use annotations for named queries that are logically scoped to a persistence unit rather
than to a specific class or method. This applies also to the NamedNativeQuery annotations.

127 6/25/05



Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft Annotations for Queries

8.3.3

NamedNatveQuery Annotation

8.3.4

The NamedNativeQuery annotation is used to specify a native SQL named query. The name ele-
ment is used to refer to the query when using the EntityManager methods that create query objects. The
resultClass element refers to the class of the result; the value ofdiseltSetMapping ele-

ment is the name of 8QLResultSetMapping , as defined in metadata.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
String name();
String queryString();
Class resultClass() default void.class;
String() resultSetMapping() default "; // name of SQLResultSetMap-

ping
}

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQueries {
NamedNativeQuery [] value ();

}

Annotations for SQL Query Result Set Mappings

The SqlResultSetMapping annotation is used to specify the mapping of the result of a native SQL
query.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface SqglResultSetMapping {
String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

}

Thename element is the name given to the result set mapping, and used to refer to it in the methods of
the Query API. Thentities andcolumns elements are used to specify the mapping to entities and
to scalar values respectively.

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {
Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

TheentityClass element specifies the class of the result.

ThediscriminatorColumn element is used to specify the column name (or alias) of the column in
the SELECT list that is used to determine the type of the entity instance.

Thefields elementis used to map the columns specified in the SELECT list of the query to the prop-
erties or fields of the entity class.

6/25/05

128



Sun Microsystems, Inc.

References to EntityManager and EntityManagerFactoryEnterprise JavaBeans 3.0, Public Draft Metadata Annotations

@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();

}

Thename element is the name of the persistent field or property of the class.
Thecolumn element is the column name (or alias) as specified in the SELECT list.

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {
String name();

8.4 References to EntityManager and EntityManagerFactory

These annotations are used to express dependencies on entity managers and entity manager factories.

[Note to readers] The names of these annotations are currently undergoing review, and are subject to change.

8.4.1 PersistenceContext Annotation

ThePersistenceContext annotation is used to express a dependency on an EntityManager persis-
tence context.

The name element refers to the name by which the EntityManager and its persistence unit are to be
known in the environment referencing context, and is not needed when dependency injection is used.

TheunitName element refers to the name of the persistence unit. It must be specified if there is more
than one persistence unit.

Thetype element specifies whether a transaction-scoped or extended persistence context is to be used.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext{

String name() default ",

String unitName() default ™;

PersistenceContextType type default TRANSACTION;

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceContexts{
PersistenceContexts[] value();

129 6/25/05



Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Public Draft References to EntityManager and EntityMan-

8.4.2 PersistenceUnit Annotation

The PersistenceUnit annotation is used to express a dependency on an EntityManagerFactory.

The name element refers to the name by which the EntityManagerFactory is to be known in the envi-
ronment referencing context, and is not needed when dependency injection is used.

TheunitName element refers to the name of the persistence unit. It must be specified if there is more
than one persistence unit.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit{

String name() default ";
String unitName() default "";

}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits{
PersistenceUnit[] value();

6/25/05 130



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Chapter 9

9.1

Metadata for Object/Relational Mapping

The object/relational mapping metadata expressed by an application is part of the application domain
model contract.

The object/relational mapping metadata expresses requirements and expectations on the part of the
application as to the mapping of the entities and relationships of the application domain to a database.
Queries (and, in particular, SQL queries) written against the database schema that corresponds to the
application domain model are dependent upon the mappings expressed by means of the object/relational
mapping metadata.

The implementation of this specification must assume the application logic to be dependent upon the
object/relational mapping expressed in metadata.

Itis permitted, but not required, that DDL generation be supported by an implementation of this specifi-

cation. The annotation elements that specify such DDL are intended as hints to the implementation for
DDL generation. Use of such hints is not portable.

Annotations for Object/Relational Mapping

These annotations are in the packgyax.persistence

131 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

[Note to readers] We are currently examining how we might use metadata annotations at the persistence unit

level to allow defaults to be set for an entire persistence unit. These defaults would include set-
tings for access type, cascade mode, and flush mode.

9.1.1 Table Annotation

The Tableannotation  specifies the primary table for the annotated entity. Additional tables may be
specified usingsecondaryTable  or SecondaryTables  annotation. If noTable annotation is
specified for an entity class, all of the default values defined byatble annotation will apply.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
String name() default "";
String catalog() default "™;
String schema() default "™;
UniqueConstraint[] uniqgueConstraints() default {};

boolean specified() default true; // For internal use only [27]
}
Table 4 lists the annotation elements that may be specifiedradsla annotation.
Table 4 Table Annotation Elements
Type Name Description Default
String name (Optional) The name of the table. Unqualified
class name of
the entity
String catalog (Optional) The catalog of the table. Default catalog
String schema (Optional) The schema of the table. Default schema
for user
UniqueConstraint[]| uniqueConstraints (Optional) Unique constraints that should p&lo constraints
placed on the table. These are only used if table
generation is in effect. These constraints apply
in addition to any constraints specified by the
Column and JoinColumn annotations, or
entailed by primary key mappings.
Example:
@Entity
@Table(name="CUST", schema="RECORDS")
public class Customer { ... }
[27] Note to the reader: use of this element, where specified=FALSE, allows this annotation to be treated as an optiowéleelement
containing annotation. See, e.g., JoinTable.
6/25/05 132



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

9.1.2 Secondary®able Annotation

TheSecondaryTable annotation is used to specify a secondary table for an entity class. Specifying
one or more secondary tables indicates that the entity data is stored across multiple tables.

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTable {
String name();
String catalog() default ™;
String schema() default "";
PrimaryKeyJoinColumn[] pkJoin() default {};
UniqueConstraint[] uniqgueConstraints() default {};

}

Table 5 lists the annotation elements that may be specifiedSiecandaryTable  annotation.

Table 5 SecondaryTable Annotation Elements

Type Name Description Default

String name (Required) The name of the table

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the tabje. Default schema for user

PrimaryKeyJoin- | pkJoin (Optional) The columns that should Column(s) of the same

Columnl] be used to join with the primary name as the primary key
table. column(s) in the primary

table

UniqueConstraint[]| uniqueConstrains (Optional) Unique constraints thaiNo constraints
should be placed on the table. These
are typically only used if table gen-
eration is in effect. These constraints
apply in addition to any constraints|
specified by the Column and Join-
Column annotations, or entailed by
primary key mappings.

If no SecondaryTable annotation is specified, it is assumed that all properties of the entity are
mapped to the primary table. If no primary key join column is specified, the join columns are assumed
to reference the primary key columns of the primary table, and have the same names as the referenced
columns.

Example: Single secondary table with a single primary key column

@Entity

@Table(name="CUSTOMER")

@SecondaryTable(name="CUST_DETAIL",
pkJoin=@PrimaryKeyJoinColumn(name="CUST_ID"))

public class Customer { ... }

133 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

9.13

Example: Single secondary table with multiple primary key columns

@Entity
@Table(hname="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
pkJoin=@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="CUST_ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE")}))
public class Customer { ... }

Secondaryfbles Annotation

9.14

An entity may have multiple secondary tables. In this case they must be enclosed witbaorad-
aryTables annotation. ASecondaryTables annotation takes an array &econdaryTable
annotations as its single annotation element.

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTables {
SecondaryTable[] value();

}

Example: Multiple secondary tables assuming primary key columns are named the same in all tables

@Entity

@Table(name="EMPLOYEE")

@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL"),
@SecondaryTable(name="EMP_HIST")

public class Employee { ... }

Example: Multiple secondary tables with differently named primary key columns

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL",
pkJoin=@PrimaryKeyJoinColumn(name="EMPL_ID")),
@SecondaryTable(name="EMP_HIST",
pkJoin=@PrimaryKeyJoinColumn(name="EMPLOYEE_ID"))

public class Employee { ... }

UnigueConstraint Annotation

TheUniqueConstraint annotation is used to specify that a unique constraint should be included in
the generated DDL for a primary or secondary table.

@Target({TYPE}) @Retention(RUNTIME)
public @interface UniqueConstraint {
String[] columnNames();

6/25/05

134



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Table 6 lists the annotation elements that may be specifiedJoigaeConstraint annotation.

Table 6

9.15

UniqueConstraint Annotation Elements

Type Name Description Default

String[] | columnNames (Required) An array of the column names that make up the
constraint.

Example:

@Entity
@Table(
name="EMPLOYEE",
uniqueConstraints=
{@UniqueConstraint(columnNames={"EMP_ID", "EMP_NAME"})}

public class Employee { ... }

Column Annotation

The Column annotation is used to specify a mapped column for a persistent property or field. If a
Column annotation is not specified, or if the name annotation element is missing, the column name
defaults to the persistent property or field name.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {
String name() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default ™;
String secondaryTable() default ";
int length() default 255;
int precision() default O; // decimal precision

int scale() default O; / decimal scale

}

Table 7 lists the annotation elements that may be specifiedCioluann annotation.

Table 7

Column Annotation Elements

Type Name Description Default

String name (Optional) The name of the column. The property or field name

135 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

9.16

Enterprise JavaBeans 3.0, Public Draft

Annotations for Object/Relational Mapping

Type Name Description Default
boolean| unique (Optional) Whether the property is a unique kefalse
This is a shortcut for the UniqueConstraint anro-
tation at the table level and is useful for when the
unique key constraint is only a single field. Thjs
constraints applies in addition to any constraint
entailed by primary key mapping.
boolean| nullable (Optional) Whether the database column is nuirue
lable.
boolean| insertable (Optional) Whether the column should be | true
included in SQL INSERT statements generated
by the persistence provider.
boolean| updatable (Optional) Whether the column should be | true
included in SQL UPDATE statements generated
by the persistence provider.
String columnDefinition| (Optional) The SQL fragment that is used wheGenerated SQL to create a
generating the DDL for the column. column of the inferred
type.
String secondaryTable (Optional) The name of the secondary tablg tRatiumn is in primary table.
contains the column. If absent the column is
assumed to be in the primary table.
int length (Optional) The column length. 255
int precision (Optional) The precision for a decimal column. 0
int scale (Optional) The scale for a decimal column. 0
Examples:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

@Column(name="DESC",

columnDefinition="CLOB NOT NULL",
secondaryTable="EMP_DETAIL")
public String getDescription() { return description; }

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() { return cost; }

JoinColumn Annotation

TheJoinColumn annotation is used to specify a mapped column for joining an entity association. The
name annotation element defines the name of the foreign key column. The remaining annotation ele-
ments (other thaneferencedColumnName ) refer to this column and have the same semantics as
for theColumn annotation.

If the referencedColumnName
mary key of the referenced table.

element is missing, the foreign key is assumed to refer to the pri-

6/25/05

136



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

If the name annotation element is missing, or if doinColumn annotation is specified, the join col-
umns are assumed to have the same names as the primary key columns of the referenced table.

If no JoinColumn annotation is specified, a single join column is assumed. The defaults for the join
column are as described below.

If there is a single join column, then

* If the name annotation member is missing, the join column name is formed as the concatena-
tion of the following: the name of the referencing relationship property or field of the referenc-
ing entity; " "; the name of the referenced primary key column.

* |If the referencedColumnName element is missing, the foreign key is assumed to refer to
the primary key of the referenced table.

If there is more than one join columnJainColumn annotation must be specified for each join col-
umn. Both thename and thereferencedColumnName elements must be specified in each such
JoinColumn annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default ";

String referencedColumnName() default ",

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ™;
String secondaryTable() default ";

}

Support for referenced columns that are not the primary key of the referenced table is optional in this
release, but will be required in the next.

Table 8 lists the annotation elements that may be specifiedl@n@olumn annotation.

Table 8 JoinColumn Annotation Elements
Type Name Description Default
String name (Optional) The name of the foreign key columr{Only applies if sin-

The table in which it is found depends upon thegle join column is
context. If the join is for a OneToOne or Many} being used.) The
ToOne mapping or for a secondary table joingdconcatenation of the
to a primary table, then the foreign key colump following: the name
is in the table of the source entity. If the join i of the referencing
for a ManyToMany then the foreign key is in @ relationship prop-
join table. erty or field of the
referencing entity;
" " the name of the
referenced primary
key column.

137 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

9.1.7

Enterprise JavaBeans 3.0, Public Draft

Annotations for Object/Relational Mapping

Type Name Description Default

String referencedColumnName  (Optional) The name of the column referencé®nly applies if sin-
by this foreign key column. When used with | gle join column is
mappings, the referenced column is in the tahjlebeing used.) The
of the target entity. When used inside a JoinTablesame name as the
annotation, the referenced key column is in the primary key column
entity table of the owning entity, or inverse entity of the referenced
if the join is part of the inverse join definition. | table.

boolean| unique (Optional) Whether the property is a unique kefalse
This is a shortcut for the UniqueConstraint anro-
tation at the table level and is useful for when the
unique key constraint is only a single field. It i$
not necessary to explicitly specify this for a join
column that corresponds to a primary key that|is
part of a foreign key.

boolean| nullable (Optional) Whether the foreign key column is true
nullable.

boolean| insertable (Optional) Whether the column should be | true
included in SQL INSERT statements generated
by the persistence provider.

boolean| updatable (Optional) Whether the column should be | true
included in SQL UPDATE statements generate¢d
by the persistence provider.

String columnDefinition (Optional) The SQL fragment that is used wheGenerated SQL to
generating the DDL for the column. create a column of

the inferred type.

String secondaryTable (Optional) The name of the secondary tablg thiit set, column is
contains the column. If absent the column is | in primary table.
assumed to be in the primary table of the appli-
cable entity.

Examples:
@ManyToOne

@JoinColumn(name="ADDR_ID")
public Address getAddress() { return address; }

JoinColumns Annotation

Composite keys are supported via th@nColumns

annotation. This allows

JoinColumn  specifications for the same relationship or table association.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumns {
JoinColumn[] value();

}

grouping a number of

6/25/05

138



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Example:

@ManyToOne

@JoinColumns({
@JoinColumn(name="ADDR_ID", referencedColumnName="ID"),
@JoinColumn(name="ADDR_ZIP", referencedColumnName="ZI|P")

)
public Address getAddress() { return address; }

9.1.8 Id Annotation
Theld annotation selects the identifier property of an entity root class. By default, the mapped columns
of this property are assumed to form the primary key of the primary table. Galomn annotation is
specified, the primary key column name is assumed to be the name of the identifier property or field.
Primary key generation strategies may also be specified ildtrenotation. The types of id generation
are defined by th&eneratorType enum:
public enum GeneratorType { TABLE, SEQUENCE, IDENTITY, AUTO, NONE };
The TABLE strategy indicates that the persistence provider should assign identifiers using an underly-
ing database table to ensure uniqueness. The SEQUENCE and IDENTITY strategies specify the use of
a database sequence or identity column, respectively. AUTO indicates that the persistence provider
should pick an appropriate strategy for the particular database. Specifying NONE indicates that no pri-
mary key generation by the persistence provider should occur, and that the application will be responsi-
ble for assigning the primary key. This specification does not define the exact behavior of these
strategies.
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {
GeneratorType generate() default NONE;
String generator() default ™;
Table 9 lists the annotation elements that may be specified fdr annotation.
Table 9 Id Annotation Elements

Type Name Description Default

GeneratorType| generate (Optional) The type of primary key generdti@eneratorType.NONE (no pri-
that the persistence provider should use to| mary key generation)
generate the annotated entity primary key.

String generator]  (Optional) The generator annotation elemeridefault id generator supplied
selects a specific primary key generator thafidy persistence provider.
defined by an annotation.

139 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

Examples:

@Id
public Long getld() { return id; }

@Id(generate=SEQUENCE, generator="CUST_SEQ")
@Column(name="CUST_ID")
public Long getld() { return id; }

@Ild(generate=TABLE, generator="CUST_GEN")
@Column(name="CUST _ID")

Long id;
9.1.9 Attrib uteOverride Annotation
The AttributeOverride annotation is used to override mappings of properties or fields. Columns
in the overrides apply to the current primary table for the class that contains the annotation. The
AttributeOverride (or AttributeOverrides ) annotation may be used on an entity that
extends an embeddable superclass or on an embedded field or propgttiibifteOverride is
not specified, the column is mapped the same as in the original mapping.
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {
String name();
Column column();
}
Table 10 lists the annotation elements that may be specified\tnitauteOverride annotation.
Table 10 AttributeOverride Annotation Elements

Type Name Description Default

String name (Required) The name of the property that is being mapped if
access is set to PROPERTY, or the name of the field if acgess
is set to FIELD in the embedded object.

Column column| (Required) The column that is being mapped to the persis-
tent attribute. The mapping type will remain the same as|is
defined in the embeddable class.

9.1.10 Attrib uteOverrides Annotation

The mappings of multiple properties or fields may be overridden. In this case, the overriding informa-
tion must be enclosed with aitributeOverrides annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
AttributeOverride[] value();

6/25/05

140



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

9.1.11

Embeddedld Annotation

TheEmbeddedld annotation is used to denote a composite primary key that is an embeddable class. It
may be applied to a persistent field or property of the entity class. There should only Benberéede-
dld annotation and nld annotations when tHembeddedld annotation is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

Example:

@EmbeddedId
protected EmployeePK empPK;

9.1.12 IdClass Annotation
TheldClass annotation is used to denote a composite primary key. It is applied to the entity class.
The composite primary key class corresponds to multiple fields or properties of the entity class, and the
names of primary key fields or properties in the primary key class and those of the entity class must cor-
respond and their types must be the same. See Section 2.1.4, “Primary Keys and Entity Identity”. The
Id annotation may also be applied to such fields or properties, however this is not required.
@Target{TYPE}) @Retention(RUNTIME)
public @interface IdClass {
Class value();
}
Example:
@IdClass(com.acme.EmployeePK.class)
@Entity(access=FIELD)
public class Employee {
@Id String empName;
@Id Date birthDay;
}
9.1.13 Transient Annotation

TheTransient  annotation is used to annotate a property or field of the entity class. It specifies that
the property or field is not persistent.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

141 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

9.1.14

Version Annotation

TheVersion annotation specifies the version property (optimistic lock value) of an entity class. This
is used to ensure integrity when reattaching and for overall optimistic concurrency control. Only a sin-
gle Version property/field should be used per class; applications that use more than one are not
expected to be portable. Théersion property should be mapped to the primary table for the entity
class; applications that map thersion property to a table other than the primary table are not porta-
ble.

Fields or properties that are specified with Yersion annotation should not be updated by the appli-
cation.

The following types are supported for version propertias: , Integer , short , Short , long ,
Long, Timestamp .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

Example:

@Version
@Column("OPTLOCK")
protected int getVersionNum() { return versionNum; }

9.1.15 Basic Annotation

The Basic annotation is the simplest type of mapping to a database column. It can optionally be
applied to any persistent property or instance variable of the following type: Java primitive types, wrap-
pers of the primitive types, java.lang.String , Java.math.Biglnteger ,
java.math.BigDecimal , jJava.util.Date , java.util.Calendar , java.sgl.Date ,
java.sql.Time , java.sgl.Timestamp , byte[] , Byte[]] , char[] , Character]] |,
enums, and any other type that implements Serializable.
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER,;

TemporalType temporalType() default NONE;

boolean optional() default true;
}
TheFetchType enum defines strategies for fetching data from the database:
public enum FetchType { LAZY, EAGER };
The EAGER strategy is a requirement on the persistence provider runtime that data should be eagerly
fetched. The LAZY strategy is hint to the persistence provider runtime that data should be fetched
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for which the
LAZY strategy hint has been specified. RRaisic properties, lazy fetching might only be available for
properties which are always accessed via the get/set pair.

6/25/05 142



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

TheTemporalType enum defines the mapping for temporal types.

public enum TemporalType {
DATE, //java.sgl.Date
TIME, //java.sql.Time
TIMESTAMP, //java.sqgl.Timestamp
NONE

}

Theoptional  element can be used a a hint as to whether the value of the field or property may be
null. It is disregarded for primitive types, which are considered non-optional.

Table 11 lists the annotation elements that may be specifiedfmsia annotation.

Table 11

Basic Annotation Elements

Type Name Description Default
FetchType fetch (Optional) Whether the value of the field oy EAGER
property should be lazy loaded or eagerly
fetched.

TemporalType | tempo- | (Optional) The type used in mapping a tempgoNONE
ralType ral type.

boolean optional (Optional) Whether the value of the field o true
property may be null. This is a hint and is ds-
regarded for primitive types; it may be used in
schema generation.

Examples:

@Basic
protected String name;

@Basic(fetch=LAZY)
protected String getName() { return name; }

@Basic(fetch=LAZY)
@Column(name="EMP_PIC")
protected byte[] pic;

An enum can be mapped to either a string or an integer, and depending upon the column type either the
ordinal value or string value of the enum will be stored.

143 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

9.1.16

Example:

public enum EmployeeStatus { FULL_TIME, PART_TIME, SEASONAL, CONTRACT

}
public enum SalaryRate { PAROLE, JUNIOR, INTERMEDIATE, SENIOR, MAN-
AGER, EXECUTIVE }

@Entity public class Employee {

b.ijblic EmployeeStatus getStatus() {...}
public SalaryRate getPayScale() {...}

}

If the status property were mapped to a column of type integer, and the payscale property to a column of
varchar type, an instance that had a statlB&RT_TIMEand a pay rate afUNIOR would have a row
stored in the table witBTATUSset to 1 andPAYSCALEset to"JUNIOR" .

Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large object to a
database-supported large object type. A Lob may be either a binary or character type, as defined by the
LobType enum.

public enum LobType { BLOB, CLOB };

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {

FetchType fetch() default LAZY;

LobType type() default BLOB;

boolean optional() default true;

}
Blob fields may be defined to be of tyBgte[] or a Serializable type.

Clob fields may be defined to be of tygiear[] , Character][] or String

The LAZY strategy for Blob and Clob fields iskint to the persistence provider runtime that data
should be fetched lazily when it is first accessed. The EAGER strategy is a requirement on the persis-
tence provider runtime that data should be eagerly fetched.

Examples:

@Lob
@Column(name="PHOTQO" columnDefinition="BLOB NOT NULL")
protected JPEGImage picture;

@Lob(fetch=EAGER, type=CLOB)
@Column(name="REPORT")
protected String report;

6/25/05

144



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping
Table 12 LobAnnotation Elements
Type Name Description Default
FetchType fetch (Optional) Whether the lob should be lazy| LAZY
loaded or eagerly fetched.
LobType type (Optional) The type of the lob. BLOB
boolean optional (Optional) Whether the value of the field o true

property may be null. This is a hint; it may be
used in schema generation.

9.1.17 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class that has
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it can
usually be inferred from the type of the object being referenced.

The cascade set will cause the specified cascadable operations to be propagated to the associated
entity. The operations that are cascadable are defined BattadeType enum:

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};

Multiple operations may be included in the set. The vatascade=ALL is equivalent tocas-
cade={PERSIST, MERGE, REMOVE, REFRESH} .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

}

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity
should be eagerly fetched. The LAZY strategy Hsiat to the persistence provider runtime that the asso-
ciated entity should be fetched lazily when it is first accessed. The implementation is permitted to
eagerly fetch associations for which the LAZY strategy hint has been specified.

Table 13 lists the annotation elements that may be specifiedfan@l oOne annotation.

145 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Enterprise JavaBeans 3.0, Public Draft

Annotations for Object/Relational Mapping

Table 13 ManyToOne Annotation Elements
Type Name Description Default
Class targetEntity| (Optional) The entity class that is the target| of he type of the field or
the association. property that stores the
association.
CascadeType[]| cascade (Optional) The operations that should be ¢aslo operations are cas-
caded to the target of the association. caded.
FetchType fetch (Optional) Hint to the implementation as to | EAGER
whether the association should be lazy loaded
or eagerly fetched. The EAGER strategy is a
requirement on the persistence provider runtt
ime that the associated entity should be eagerly
fetched.
boolean optional (Optional) Whether the association is optionattue
If set to false then a non-null relationship must
always exist.
Example:
@ManyToOne(optional=false)
@JoinColumn(name="CUST _ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }
9.1.18 OneToOne Annotation
The OneToOne annotation defines a single-valued association to another entity that has one-to-one
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it can
usually be inferred from the type of the object being referenced.
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;
String mappedBy() default "";
}
Table 14 lists the annotation elements that may be specifiedfioe BoOne annotation.
Table 14 OneToOne Annotation Elements
Type Name Description Default
Class targetEntity| (Optional) The entity class that is the target of he type of the property
the association. that stores the association.
6/25/05 146



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Enterprise JavaBeans 3.0, Public Draft

Metadata for Object/Relational Mapping

Type

Name

Description

Default

CascadeType[]

cascade

(Optional) The operations that should be
caded to the target of the association.

allo operations are cas-
caded.

FetchType

fetch

(Optional) Hint to the implementation as to
whether the association should be lazy loade
or eagerly fetched. The EAGER strategy is a

requirement on the persistence provider runtt

ime that the associated entity should be eage
fetched.

EAGER

o

=

y

boolean

optional

(Optional) Whether the association is optionattue

If set to false then a non-null relationship mu
always exist.

5t

String

mappedBy

(Optional) The field that owns the relationsh
The mappedBy element is only specified on t
inverse (non-owning) side of the association.

ip.
ne

Example: One-to-one association that maps a foreign key column.

On Customer class:

@OneToOne(optional=false)

@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

@OneToOne(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example: One-to-one association that assumes both the source and target share the same primary key

values.

On Employee class:

@Entity(access=FIELD)
public class Employee {
@Id Integer id;

@OneToOne @PrimaryKeyJoinColumn
Employeelnfo info;

}

On Employeelnfo class:

@Entity(access=FIELD)

public class Employeelnfo {

@Id Integer id;

147

6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

9.1.19 OneToMany Annotation

Enterprise JavaBeans 3.0, Public Draft  An

notations for Object/Relational Mapping

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

If the Collection is defined using generics to specify the element type then the associated target entity
type need not be specified; otherwise the target entity class must be specified.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

Table 15 lists the annotation elements that may be specifiedioe BoMany annotation.

Table 15 OneToMany Annotation Elements
Type Name Description Default
Class targetEntity] (Optional) The entity class that is the targefThe parameter type of the
of the association. Optional only if the Col{ Collection when defined
lection property is defined using Java gener-using generics.
ics. Must be specified otherwise.
CascadeType[]| cascade (Optional) The operations that should be ¢ds-operations are cascaded.
caded to the target of the association.
FetchType fetch (Optional) Whether the association should HAZY
lazy loaded or eagerly fetched. The EAGER
strategy is a requirement on the persistenge
provider runtime that the associated entitigs
should be eagerly fetched.
String mappedBy | The field that owns the relationship.
Required unless the relationship is unidire¢-
tional.
The default schema-level mapping for unidirectional one-to-many relationships uses a join
table, as described in Section 2.1.8.5. Unidirectional one-to-many relationships may be imple-
mented using one-to-many foreign key mappings, however, such support is not required in this
release. Applications that want to use a foreign key mapping strategy for one-to-many relation-
ships should make these relationships bidirectional to ensure portability.
Example 1: One-to-Many association using generics
In Customer class:
@OneToMany(cascade=ALL, mappedBy="customer”)
public Set<Order> getOrders() { return orders; }
6/25/05 148



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

9.1.20

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2 One-to-Many association without using generics
In Customer class:

@OneToMany(targetEntity=com.acme.Order.class, cascade=ALL,
mappedBy="customer”)
public Set getOrders() { return orders; }

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

JoinTable Annotation

A JoinTable annotation is specified on the owning side of a many-to-many association. If the
JoinTable annotation is missing, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables concate-
nated together (owning side first) using an underscore.

@Target({METHOD, FIELD})

public @interface JoinTable {
Table table() default @ Table(specified=false);
JoinColumn[] joinColumns() default {};
JoinColumn([] inverseJoinColumns() default {};

Table 16 lists the annotation elements that may be specifiedéanBable annotation.

Table 16

JoinTable Annotation Elements

Type Name Description Default
Table table (Optional) The table definition for the A default Table definition,
join table. having as its name the con-

catenated names of the two
associated entity primary
tables, separated by an
underscore.

149 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping
Type Name Description Default
JoinCol- joinColumns (Optional) Define the foreign key cql-The primary key columns of
umn(] umns of the join table which refer- | the entity and the foreign key

9.1.21

ence the primary table of the entity | columns in the join table are
owning the association (i.e. the own- assumed to have the same

ing side of the association). names.
JoinCol- inverseJoinColumng  (Optional) Define the foreign key colfhe primary key columns of
umn(] umns of the join table which refer- | the entity and the foreign key

ence the primary table of the entity | columns in the join table are
that does not own the association (i.e.assumed to have the same
the inverse side of the association).| names.

Example:

@JoinTable(
table=@Table(hame=CUST_PHONE),
joinColumns=
@JoinColumn(name="CUST _ID", referencedColumnName="1D"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If the
Collection is defined using generics to specify the element type, the associated target entity class does
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning or inverse side.
The join table is specified on the owning side. If the association is bidirectional, either side may be des-
ignated as the owning side.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default ";

The annotation elements listed in Table 15 apply fdiaayToMany annotation.
Example 1:
In Customer class:

@ManyToMany(cascade=PERSIST)
@JoinTable(table=@Table(hname="CUST_PHONES"))
public Set<PhoneNumber> getPhones() { return phones; }

6/25/05

150



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

9.1.22

In PhoneNumber class:

@ManyToMany(cascade=PERSIST, mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

Example 2:
In Customer class:

@ManyToMany(targetEntity=com.acme.PhoneNumber.class, cascade=PERSIST)
public Set getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(targetEntity=com.acme.Customer.class, cascade=PERSIST,
mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:
In Customer class:

@ManyToMany(cascade=PERSIST)
@JoinTable(
table=@Table(hame=CUST_PHONE),
joinColumns=
@JoinColumn(name="CUST _ID", referencedColumnName="ID"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumberClass:

@ManyToMany(cascade=PERSIST, mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

MapK ey Annotation

The MapKey annotation is used to specify the map key for associations gdvgpéil.Map

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
String name() default ™;

Thename element designates the name of the persistent field or property of the associated entity that is
used as the map key. nme is not specified, by default the primary key is used as the map key.

If the primary key is a composite primary key and is mappettl&ass , an instance of the primary
key class is used as the key.

151 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

Example 1:

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empld")
public Map<Integer, Employee> getEmployees() {... }

}

@Entity
public class Employee {
private empld;
@Id Integer getEmpid() { return empld; }

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}

Example 2:

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empPK")
public Map<EmployeePK, Employee> getEmployees() {... }

}
@Entity(access=FIELD)
public class Employee {
@Embeddedld EmployeePK empPK;

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}

@Embeddable(access=FIELD)
public class EmployeePK {
String name;
Date bday;

}

6/25/05 152



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

9.1.23

OrderBy Annotation

9.1.24

TheOrderBy annotation specifies the ordering of the elements of a collection valued association at the
point when the association is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
String value() default ";

The syntax of the ordering element is@derby _list, as follows:

orderby list::= orderby item [,orderby_item]*
orderby _item::= property_or_field_name [ASC | DESC]

If ASCor DESCis not specifiedASC(ascending order) is assumed.
If the ordering element is not specified, ordering by the primary key is assumed.

The property or field name must correspond to that of a persistent property or field of the associated
class. The properties or fields used in the ordering must correspond to columns for which comparison
operators are supported.

Example:

@Entity public class Course {
@ManyToMany

@OrderBy("lastname ASC")
public List<Student> getStudents() {...};

}
@Entity public class Student {
@ManyToMany(mappedBy:"students")

@OrderBy // PK is assumed
public Set<Course> getCourses() {...};

=

Inheritance Annotation

The Inheritance annotation defines the inheritance strategy to be used for an entity class hierarchy.

The three inheritance mapping strategies are the single table per class hierarchy, table per class, and
joined subclass strategies. See Section 2.1.10 for a more detailed discussion of inheritance strategies.
The inheritance strategy options are defined byrtheritanceType enum:

public enum InheritanceType
{ SINGLE_TABLE, TABLE_PER_CLASS, JOINED };

153 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

Support for the TABLE_PER_CLASS and JOINED mapping strategies is optional in this release, but
will be required in the next.

For the SINGLE_TABLE mapping strategy, and potentially also for the JOINED strategy, the persis-
tence provider will use a type discriminator column. The supported discriminator types are defined by
the DiscriminatorType enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The strategy and thdiscriminatorType are only specified once per class hierarchy (in the root
class), while theliscriminatorValue should be specified for each class in the hierarchy.

@Target({TYPE}) @Retention(RUNTIME)

public @interface Inheritance {
InheritanceType strategy() default SINGLE_TABLE;
DiscriminatorType discriminatorType() default STRING;
String discriminatorValue() default "™;

If no inheritance type is specified for a class hierarchy, the single table per class hierarchy strategy is
used.

Table 17 lists the annotation elements that may be specifiedrfbedtance annotation.

Table 17 Inheritance Annotation Elements

Type Name Description Default

InheritanceType strategy (Optional) The table stratinheritanceType.SINGLE_TABLE
egy to use to store the
entity inheritance hierar-
chy.

DiscriminatorType | discriminatorType (Optional) The type of | DiscriminatorType.STRING
object/column to use as a
class discriminator.

String discriminatorValue| (Optional) The value that Provider-specific function to gener-
indicates that the row is anl ate a String representing the entity
entity of the annotated class
entity type.

6/25/05 154



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Example:

@Entity

@Table(name="CUST")

@Inheritance(strategy=SINGLE_TABLE,
discriminatorType=STRING,
discriminatorValue="CUST")

public class Customer { ... }

@Entity

@Inheritance(discriminatorValue="VCUST")
public class ValuedCustomer extends Customer { ... }

9.1.25 PrimaryK eyJoinColumn Annotation

The PrimaryKeyJoinColumn annotation specifies the primary key columns that are used as a for-
eign key to join to another table. Th&imaryKeyJoinColumn annotation is used to join the pri-
mary table of an entity subclass in the JOINED mapping strategy to the primary table of its superclass;
together with aSecondaryTable  annotation to join a secondary table to a primary table; or in a
OneToOne mapping in which the primary key of the referencing entity is used as a foreign key to the
referenced entity.

If no PrimaryKeyJoinColumn annotation is specified for a subclass in the JOINED mapping strat-
egy, the foreign key columns are assumed to have the same names as the primary key columns of the
primary table of the superclass.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {

String name() default ",

String referencedColumnName() default "";

String columnDefinition() default ";

Table 18 lists the annotation elements that may be specifiedRdnearyKeyJoinColumn annota-

tion.
Table 18 PrimaryKeyJoinColumn Annotation Elements

Type | Name Description Default

String | name The name of the primary key col- The same name as the primary key
umn of the current table. column of the table for the referenc-

ing entity.

String | referencedColumnName  (Optional) The name of the pri- The same name as the primary key
mary key column of the table column of the table for the refer-
being joined to. enced entity.

String | columnDefinition (Optional) The SQL fragment thatGenerated SQL to create a column

is used when generating the DDL of the inferred type.
for the column. This should not be
specified for a OneToOne primary
key association.

155 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft

9.1.26

Example: Customer and ValuedCustomer subclass

@Entity

@Table(name="CUST")

@Inheritance(strategy=JOINED,
discriminatorType=STRING,
discriminatorValue="CUST")

public class Customer { ... }

@Entity

@Table(name="VCUST")
@Inheritance(discriminatorValue="VCUST")
@PrimaryKeyJoinColumn(name="CUST_ID")

public class ValuedCustomer extends Customer{ ... }

PrimaryK eyJoinColumns Annotation

Composite keys are supported via BrénaryKeyJoinColumns

@Target({TYPE}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn[] value();

Example: ValuedCustomer subclass

@Entity
@Table(name="VCUST")
@Inheritance(discriminatorValue="VCUST")
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="CUST_ID",
referencedColumnName="ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE",
referencedColumnName="TYPE")

public class ValuedCustomer extends Customer{ ... }

Annotations for Object/Relational Mapping

annotation.

6/25/05

156



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Example: OneToOne relationship between Employee and Employeelnfo classes

public class EmpPK {
public Integer id;
public String name;

}

@Entity(access=FIELD)
@IdClass(com.acme.EmpPK.class)
public class Employee {

@Id Integer id;
@Ild String name;

@OneToOne
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="ID", referencedColumn-
Name="EMP_ID"),
@PrimaryKeyJoinColumn(name="NAME", referencedColumn-
Name="EMP_NAME")})
Employeelnfo info;

}

@Entity(access=FIELD)
@IdClass(com.acme.EmpPK.class)
public class Employeelnfo {

@Ild @Column(name="EMP_ID")
Integer id;

@Ild @Column(name="EMP_NAME")
String name;

9.1.27 DiscriminatorColumn Annotation

The DiscriminatorColumn annotation is used to define the discriminator column for
SINGLE_TABLE and JOINED mapping strategies.

@Target{TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default ";

String columnDefinition() default ™;
int length() default 10;

If the DiscriminatorColumn annotation is missing, and a discriminator column is required, the
name of the discriminator column defaults to "TYPE".

Table 19 lists the annotation elements that may be specified Bas@iminatorColumn annota-
tion.

157 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping

Enterprise JavaBeans 3.0, Public Draft  An

notations for Object/Relational Mapping

Table 19 DiscriminatorColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of column to be used fofTYPE”
the discriminator.

String columnDefinition| (Optional) The SQL fragment that is used | Provider-generated SQL to
when generating the DDL for the discrimina- create a column of the speci-
tor column. fied discriminator type.

String length (Optional) The column length for 10
String-based discriminator types. Ignored far
other discriminator types.

Example:
@Entity
@Table(name="CUST")
@Inheritance(strategy=SINGLE_TABLE,
discriminatorType=STRING,
discriminatorValue="CUSTOMER")
@DiscriminatorColumn(name="DISC", length=20)
public class Customer { ... }
9.1.28 Embeddable Annotation
TheEmbeddable annotation is used to mark an object that is stored as an intrinsic part of an owning
entity and shares the identity of that entity. Each of the persistent properties or fields of the embedded
object is mapped to the database table. Bdgic , Column, andLob mapping annotations may be
used to map embedded objects.
@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {
AccessType access() default PROPERTY;
}
Table 20 lists the annotation elements that may be specified Embaddable annotation.
Table 20 Embeddable Annotation Elements

Type

Name

Description

Default

AccessType| accesp

(Optional) Specifies how the persistence provider runtime accesBROPERTY

the persistent attributes of the embedded object, either through its

properties or its fields.

6/25/05

158



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Metadata for Object/Relational Mapping

Example:

@Embeddable(access=FIELD)

public class EmploymentPeriod {
java.util.Date startDate;
java.util.Date endDate;

}
9.1.29 Embedded Annotation
The Embedded annotation may be used in an entity class when it is using a shared embeddable class.
The entity may override the column mappings declared within the embeddable class to apply to its own
entity table.
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}
}
Example:
@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate", column=@Col-
umn("EMP_START")),
@AttributeOverride(name="endDate", column=@Column("EMP_END"))
)
public EmploymentPeriod getEmploymentPeriod() { ... }
9.1.30 EmbeddableSupeclass Annotation
TheEmbeddableSuperclass  annotation designates an embedded superclass.
A class designated as an embeddable superclass has no separate table defined for it. Its mapping infor-
mation is applied to the entities that inherit from it.
A class designated &mbeddableSuperclass  can be mapped in the same way as an entity except
that the mappings will apply only to its subclasses since no table exists for the embeddable superclass.
When applied to the subclasses the inherited mappings will apply in the context of the subclass tables.
Mapping information may be overridden in such subclasses by using\tthibuteOverride
annotation.
@Target(TYPE) @Retention(RUNTIME)
public @interface EmbeddableSuperclass {
AccessType access() default PROPERTY;
}
The semantics of theccess element are the same as for the Entity annotation.
9.1.31 SequenceGenerator Annotation

159 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft ~ Annotations for Object/Relational Mapping

The SequenceGenerator  annotation defines a primary key or id generator which may be refer-
enced by name when annotating the id attribute (@d@ annotation). A generator may be defined at
either the class, method, or field level. The level at which it is defined will depend upon the desired vis-
ibility and sharing of the generator. No scoping or visibility rules are actually enforced. However, it is
good practice to define the generator at the level for which it will be used.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {

String name();

String sequenceName() default ";

int initialValue() default O;

int allocationSize() default 50;

}

Table 21 lists the annotation elements that may be specifiedsiguenceGenerator  annotation.

Table 21

9.1.32

SequenceGenerator Annotation Elements

Type Name Description Default

=
'

String | name (Required) A unique name for the generator that can be refe
enced by one or more classes to be the generator for ids.

String | sequenceName (Optional) The name of the database sequence object to obtafpdavider-

from. chosen
value
int initialValue (Optional) The value to set the sequence object to start generatihg

from once it has been created.

int allocationSize (Optional) The amount to increment by when allocating sequerkte
numbers from the sequence.

Example:

@SequenceGenerator(name="EMP_SEQ", allocationSize=25)

TableGenerator Annotation

TheTableGenerator  annotation defines a primary key or id generator which may be referenced by
name when annotating the id attribute (¥@éd annotation). A generator may be defined at either the
class, method, or field level. The level at which it is defined will depend upon the desired visibility and
sharing of the generator. No scoping or visibility rules are actually enforced. However, it is good prac-
tice to define the generator at the level for which it will be used.

6/25/05

160



Sun Microsystems, Inc.

Annotations for Object/Relational Mapping

Enterprise JavaBeans 3.0, Public Draft

Metadata for Object/Relational Mapping

The table is used by the persistence provider to store generated id values for entities. An entity type will
typically use its own row in the table to generate the id values for that entity class. The id values are nor-
mally positive integers.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {
String name();
Table table() default @ Table(specified=false);

String pkColumnName() default "";

String valueColumnName() default ";
String pkColumnValue() default "";

int initialValue() default O;

int allocationSize() default 50;

}

Table 22 lists the annotation elements that may be specified &bl@Generator

annotation.

Table 22

TableGenerator Annotation Elements

Type Name Description Default

String | name (Required) A unique name for the genera-
tor that can be referenced by one or mofe
classes to be the generator for ids.

Table table (Optional) Table that stores the generatetilame is chosen by persistence
ids. Full table annotation that may be usedprovider
when a table definition is required.

String | pkColumnName (Optional) Name of the primary key col- A provider-chosen hame
umn in the table.

String | valueColumn- (Optional) Name of the column that storgs A provider-chosen name

Name the last value generated.

String | pkColumnValue (Optional) The primary key value in thg A provider-chosen value to store
generator table that distinguishes this set in the primary key column of the
of generated values from others that maly generator table
be stored in the table.

int initialValue (Optional) The initial value to be used | 0
when allocating id numbers from the genp-
erator.

int allocationSize (Optional) The amount to increment by| 50

when allocating id numbers from the ge
erator. T

161

6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft

Examples:

@Entity public class Employee {

@TableGenerator(name="empGen",
table=@Table(hame="ID_GEN"),
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

@Ild(generate=TABLE, generator="empGen")

public int id;

}
@Entity public class Address {

@TableGenerator(name="addressGen",
table=@Table(hame="ID_GEN"),
pkColumnValue="ADDR_ID")

@Ild(generate=TABLE, generator="addressGen")

public int id;

Annotations for Object/Relational Mapping

6/25/05

162



Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft

9.2 Examples of the Application of Annotations for
Object/Relational Mapping

Metadata for

9.2.1 Examples of Simple Mappings

@Entity(access=FIELD)
public class Customer {

}

@Ild(generate=AUTO) Long id;

@Version protected int version;

@ManyToOne Address address;

@Basic String description;

@OneToMany(targetEntity=com.acme.Order.class,
mappedBy="customer")

Collection orders = new Vector();

@ManyToMany(mappedBy="customers")

Set<DeliveryService> serviceOptions = new HashSet();

public Customer() {}
public Long getld() { return id; }
public Address getAddress() { return address; }

public void setAddress(Address addr) {
this.address = addr;

public String getDescription() { return description; }
public void setDescription(String desc) {
this.description = desc;

public Collection getOrders() { return orders; }

public Set<DeliveryService> getServiceOptions() {
return serviceOptions;

}

@Entity
public class Address {

private Long id;
private int version;
private String street;

public Address() {}

@Ild(generate=AUTO)

public Long getld() { return id; }

protected void setld(Long id) { this.id = id; }

@Version
public int getVersion() { return version; }

163

6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

protected void setVersion(int version) {
this.version = version;
}

public String getStreet() { return street; }
public void setStreet(String street) {
this.street = street;

@Entity
public class Order {

private Long id;

private int version;
private String itemName;
private int quantity;
private Customer cust;

public Order() {}

@Ild(generate=AUTO)
public Long getld() { return id; }
public void setld(Long id) { this.id = id; }

@Version

protected int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

}

public String getltemName() { return itemName; }

public void setltemName(String itemName) {
this.itemName = itemName;

}

public int getQuantity() { return quantity; }
public void setQuantity(int quantity) {
this.quantity = quantity;

@ManyToOne
public Customer getCustomer() { return cust; }
public setCustomer(Customer cust) {
this.cust = cust;
}

}

@Entity
@Table(name="DLVY_SVC")
public class DeliveryService {

private String serviceName;
private int priceCategory;
private Collection customers;

public DeliveryService() {}

6/25/05 164



Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft

}

@Id

public String getServiceName() { return serviceName; }

public void setServiceName(String serviceName) {
this.serviceName = serviceName;

public int getPriceCategory() { return priceCategory; }
public void setPriceCategory(int priceCategory) {
this.priceCategory = priceCategory;

@ManyToMany(targetEntity=com.acme.Customer.class)

@JoinTable(table=@Table(name="CUST_DLVRY"))

public Collection getCustomers() { return customers; }

public setCustomers(Collection customers) {
this.customers = customers;

}

Metadata for

165

6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

9.2.2 A More Complex Example

[***x Employee class *****/

@Entity
@Table(name="EMPL")
@SecondaryTable(name="EMP_SALARY",
pkJoin=@PrimaryKeyJoinColumn(name="EMP_ID",
referencedColumnName="ID"))
public class Employee implements Serializable {

private Long id;

private int version;

private String name;

private Address address;

private Collection phoneNumbers;
private Collection<Project> projects;
private Long salary;

private EmploymentPeriod period;

public Employee() {}

@Ild(generate=TABLE)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version
@Column(name="EMP_VERSION", nullable=false)
public int getVersion() { return version; }
protected void setVersion(int version) {
this.version = version;

}

@Column(name="EMP_NAME", length=80)
public String getName() { return name; }
public void setName(String name) { this.name = name; }

@ManyToOne(cascade=PERSIST, optional=false)
@JoinColumn(name="ADDR_ID",
referencedColumnName="ID", nullable=false)
public Address getAddress() { return address }
public void setAddress(Address address) {
this.address = address;

@OneToMany(targetEntity=com.acme.PhoneNumber.class,
cascade=ALL, mappedBy="employee")
public Collection getPhoneNumbers() { return phoneNumbers; }
public void setPhoneNumbers(Collection phoneNumbers) {
this.phoneNumbers = phoneNumbers;

@ManyToMany(mappedBy="employee", cascade=PERSIST)
@JoinTable(table=@Table(name="EMP_PROJ"),
joinColumns=@JoinColumn(
name="EMP_ID", referencedColumnName="ID"),
inverseJoinColumns=@JoinColumn(
name="PROJ_ID", referencedColumnName="ID"))
public Collection<Project> getProjects() { return projects; }

6/25/05 166



Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft

public void setProjects(Collection<Project> projects) {
this.projects = projects;

@Column(name="EMP_SAL", secondaryTable="EMP_SALARY")
public Long getSalary() { return salary; }
public void setSalary(Long salary) {

this.salary = salary;

@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate",
column=@Column(name="EMP_START")),
@AttributeOverride(name="endDate",
column=@Column(hame="EMP_END"))

)
public EmploymentPeriod getEmploymentPeriod() {
return period,;

public void setEmploymentPeriod(EmploymentPeriod period) {
this.period = period;

[F**%* Address class *****/

@Entity
public class Address implements Serializable {

private Integer id,;
private int version;
private String street;
private String city;

public Address() {}

@Ild(generate=IDENTITY)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version @Column("VERS", nullable=false)

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

}

@Column(name="RUE")

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

@Column(name="VILLE")
public String getCity() { return city; }
public void setCity(String city) { this.city = city; }

Metadata for

167

6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

[***** PhoneNumber class *****/

@Entity
@Table(hname="PHONE")
public class PhoneNumber implements Serializable {

private String number;
private int phoneType;
private Employee employee;

public PhoneNumber() {}

@Id

public String getNumber() { return number; }

public void setNumber(String number) {
this.number = number;

@Column(name="PTYPE")

public int getPhonetype() { return phonetype; }

public void setPhoneType(int phoneType) {
this.phoneType = phoneType;

@ManyToOne(optional=false)
@JoinColumn(name="EMP_ID", referencedColumnName="ID")
public Employee getEmployee() { return employee; }
public void setEmployee(Employee employee) {
this.employee = employee;

[¥*** Project class *****/

@Entity

@Inheritance(strategy=JOINED,
discriminatorType=STRING,
discriminatorValue="Proj")

@DiscriminatorColumn(name="DISC")

public class Project implements Serializable {

private Integer projld;

private int version;

private String name;

private Set<Employee> employees;

public Project() {}

@Ild(generate=TABLE)
public Integer getld() { return projld; }
protected void setld(Integer id) { this.projld = id; }

@Version
public int getVersion() { return version; }
protected void setVersion(int version) { this.version = version; }

@Column(name="PROJ_NAME")
public String getName() { return name; }

6/25/05 168



Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Public Draft Metadata for

public void setName(String name) { this.name = name; }

@ManyToMany(mappedBy="projects")

public Set<Employee> getEmployees() { return employees; }

public void setEmployees(Set<Employee> employees) {
this.employees = employees;

[¥**x GovernmentProject subclass *****/

@Entity

@Table(name="GOVT_PROJECT")

@Inheritance(discriminatorValue="GovtProj")

@PrimaryKeyJoinColumn(name="GOV_PROJ_ID",
referencedColumnName="ID")

public class GovernmentProject extends Project {

private String filelnfo;
public GovernmentProject() { super(); }

@Column("INFQO")
public String getFilelnfo() { return filelnfo; }
public void setFilelnfo(String filelnfo) {
this.filelnfo = filelnfo;
}
}

[***xx CovertProject subclass *****/

@Entity

@Table(name="C_PROJECT")

@Inheritance(discriminatorValue="CovProj")

@PrimaryKeyJoinColumn(name="COV_PROJ_ID",
referencedColumnName="ID")

public class CovertProject extends Project {

private String classified;

public CovertProject(String classified) {
super();
this.classified = classified;

}

@Column(updatable=false)

public String getClassified() { return classified; }

protected void setClassified(String classified) {
this.classified = classified;

[+ EmploymentPeriod class *****/

@Embeddable
public class EmploymentPeriod implements Serializable {

169 6/25/05



Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Public Draft Examples of the Application of Annotations for

private Date start;
private Date end;

public EmploymentPeriod() {}

@Column(nullable=false)

public Date getStartDate() { return start; }

public void setStartDate(Date start) {
this.start = start;

}

public Date getEndDate() { return end; }
public void setEndDate(Date end) {
this.end = end;

6/25/05 170



Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

aamere XML Descriptor

The XML descriptor is intended to serve as both an alternative and an overriding mechanism
to the use of Java language metadata annotations.

10.1 XML Schema

This section provides the XML schema for use with the persistence API.

171 6/25/05



Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Public Draft XML Schema

This is currently work in progress. The contents of this chapter are under discussion in the
Expert Group and are undergoing development and change. We present this information as
illustrative of a XML descriptor alternative and overriding mechanism to the use of Java lan-
guage metadata annotations for object/relational mapping. The intention is for this schema to
parallel the use of annotations in functionality.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins="http://java.sun.com/xml/ns/persistence_ ORM"
targetNamespace="http://java.sun.com/xml/ns/persistence_ ORM"
elementFormDefault="qualified"
version="1.0">

<l--
Top-level element defines entity and embeddable mappings, named queries
and named id generators. Defines a default package for classnames
in this mapping.

>

<xsd:element name="entity-mappings">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="package" type="xsd:string" minOccurs="0"/>

<xsd:element name="default-access" type="access-type"
default="PROPERTY" minOccurs="0"/>

<xsd:element name="default-cascade" type="cascade-type"
minOccurs="0"/>

<xsd:element name="embeddable-superclass" type="embeddable"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="entity" type="entity"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="embeddable" type="embeddable"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="query" type="query"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="native-query" type="native-query"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="sequence-generator" type="sequence-generator"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="table-generator" type="table-generator"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l--
Defines table, inheritance, attribute and association mappings
for an entity class.

-->

<xsd:complexType name="entity">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0"/>
<xsd:element name="class" type="xsd:string"/>
<xsd:element name="access" type="access-type" default="PROPERTY"
minOccurs="0"/>
<xsd:element name="inheritance-strategy" type="inheritance-type"

6/25/05

172



Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Public Draft

minOccurs="0"/>

<xsd:element name="table" type="table" minOccurs="0"/>
<xsd:element name="secondary-table" type="secondary-table"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:choice>
<xsd:sequence>
<xsd:element name="discriminator-column" type="discriminator-col-
umn”
minOccurs="0"/>
<xsd:element name="discriminator-type" type="discriminator-type"
minOccurs="0"/>
<xsd:element name="discriminator-value" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
<xsd:element name="primary-key-join-column"
type="primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>

<xsd:choice>
<xsd:element name="embedded-id" type="xsd:string"/>
<xsd:sequence>
<xsd:element name="id-class" type="xsd:string" minOccurs="0"/>
<xsd:element name="id" type="id"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:choice>

<xsd:element name="version" type="version" minOccurs="0"/>

<xsd:element name="basic" type="basic"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="lob" type="lob"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="embedded" type="embedded"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="one-to-one" type="many-to-one"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="many-to-one" type="many-to-one"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="one-to-many" type="one-to-many"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="many-to-many" type="many-to-many"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="transient" type="xsd:string"
maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

<l--
Declares a secondary table for an entity, and defines attribute
mappings to columns of that secondary table.

>

<xsd:complexType name="secondary-table">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

XML Descriptor

173

6/25/05



Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Public Draft

<xsd:element name="schema" type="xsd:string" minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string" minOccurs="0"/>

<xsd:element name="primary-key-join-column"
type="primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--

Defines default attribute mappings for an embeddable superclass.
>

<xsd:complexType name="embeddable-superclass">
<xsd:sequence>
<xsd:element name="class" type="xsd:string"/>
<xsd:element name="access" type="access-type" default="PROPERTY"
minOccurs="0"/>

<xsd:choice>
<xsd:element name="embedded-id" type="xsd:string"/>
<xsd:sequence>
<xsd:element name="id-class" type="xsd:string" minOccurs="0"/>
<xsd:element name="id" type="id"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:choice>

<xsd:element name="version" type="version" minOccurs="0"/>

<xsd:element name="basic" type="basic"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="lob" type="lob"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="embedded" type="embedded"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="one-to-one" type="one-to-one"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="many-to-one" type="many-to-one"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="one-to-many" type="one-to-many"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="many-to-many" type="many-to-many"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="transient" type="xsd:string"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--

Defines default attribute mappings for an embeddable class.
>

<xsd:complexType name="embeddable">
<xsd:sequence>

XML Schema

6/25/05 174



Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Public Draft

<xsd:element name="class" type="xsd:string"/>
<xsd:element name="access" type="access-type" default="PROPERTY"
minOccurs="0"/>

<xsd:element name="basic" type="basic"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="lob" type="lob"
maxOccurs="unbounded" minOccurs="0"/>

<xsd:element name="transient" type="xsd:string"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--
Declares a primary key attribute and, optionally, a generation strategy.
>

<xsd:complexType name="id">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="generate" type="generator-type" minOccurs="0"/>
<xsd:element name="generator" type="xsd:string" minOccurs="0" />
<xsd:element name="column" type="column" minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--

Declares a version attribute.
>

<xsd:complexType name="version">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="column" type="column" minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--
Declares a mapping for a basic attribute.
>

<xsd:complexType name="basic">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="fetch" type="fetch-type" default="EAGER"
minOccurs="0" />
<xsd:element name="optional" type="xsd:boolean" default="true"
minOccurs="0" />
<xsd:element name="temporal-type" type="temporal-type" minOccurs="0" />
<xsd:element name="column" type="column" minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--
Declares a mapping for a large object attribute.
>

XML Descriptor

175

6/25/05



Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Public Draft

<xsd:complexType name="lob">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="fetch" type="fetch-type" default="LAZY"
minOccurs="0" />
<xsd:element name="optional" type="xsd:boolean" default="true"
minOccurs="0" />
<xsd:element name="lob-type" type="lob-type" default="BLOB"
minOccurs="0" />
<xsd:element name="column" type="column" minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--
Declares an attribute of an embeddable type, and allows overriding and

addition of attribute mappings.
>

<xsd:complexType name="embedded">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>

<xsd:element name="basic" type="basic"
maxOccurs="unbounded" minOccurs="0"/>
<xsd:element name="lob" type="lob"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--
Declares a one-to-one association mapping to a foreign key column,

a primary key column, or an inverse one-to-one association.
>

<xsd:complexType name="one-to-one">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
<xsd:element name="cascade" type="cascade-type" minOccurs="0" />
<xsd:element name="fetch" type="fetch-type" default="EAGER"
minOccurs="0" />
<xsd:element name="optional" type="xsd:boolean" default="true"
minOccurs="0" />
<xsd:choice>
<xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
<xsd:element name="join-column" type="column"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="primary-key-join-column" type="column"
minOccurs="0" maxOccurs="unbounded" />
<l-- xsd:element name="join-table" type="join-table” minOccurs="0" /-->
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<l--

Declares a many-to-one association mapping to a foreign key column.
>

<xsd:complexType name="many-to-one">
<xsd:sequence>

XML Schema

6/25/05 176



Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

<xsd:element name="attribute" type="xsd:string"/>

<xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>

<xsd:element name="cascade" type="cascade-type" minOccurs="0" />

<xsd:element name="fetch" type="fetch-type" default="EAGER"
minOccurs="0" />

<xsd:element name="optional" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:choice>

<xsd:element name="join-column” type="column"
minOccurs="0" maxOccurs="unbounded" />
<l-- xsd:element name="join-table" type="join-table” minOccurs="0" /-->
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<l--
Declares a one-to-many association mapping to an association join table or

an inverse many-to-one association.
>

<xsd:complexType name="one-to-many">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
<xsd:element name="cascade" type="cascade-type" minOccurs="0" />
<xsd:element name="fetch" type="fetch-type" default="LAZY"
minOccurs="0" />
<xsd:element name="map-key" type="xsd:string" minOccurs="0" />
<xsd:element name="order-by" type="xsd:string" minOccurs="0" />
<xsd:choice>
<xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
<xsd:element name="join-table" type="join-table” minOccurs="0" />
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<l--
Declares a many-to-many association mapping to a join table or an

inverse many-to-many join table.
>

<xsd:complexType name="many-to-many">
<xsd:sequence>
<xsd:element name="attribute" type="xsd:string"/>
<xsd:element name="target-entity" type="xsd:string" minOccurs="0"/>
<xsd:element name="cascade" type="cascade-type" minOccurs="0" />
<xsd:element name="fetch" type="fetch-type" default="LAZY"
minOccurs="0" />
<xsd:element name="map-key" type="xsd:string" minOccurs="0" />
<xsd:element name="order-by" type="xsd:string" minOccurs="0" />
<xsd:choice>
<xsd:element name="mapped-by" type="xsd:string" minOccurs="0" />
<xsd:element name="join-table" type="join-table" minOccurs="0" />
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<l--

Defines a mapped table.
>

177 6/25/05



Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Public Draft

<xsd:complexType name="table">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0"/>
<xsd:element name="schema" type="xsd:string" minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string" minOccurs="0"/>
<xsd:element name="unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--
Defines the type discriminator column for a SINGLE_TABLE mapping strat-
egy.

>

<xsd:complexType name="discriminator-column">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0" />
<xsd:element name="length" type="xsd:integer" minOccurs="0" />
<xsd:element name="column-definition" type="xsd:string"
minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--

Defines a mapped column.
>

<xsd:complexType name="column">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0" />
<xsd:element name="secondary-table" type="xsd:string"
minOccurs="0" />

<xsd:element name="unique" type="xsd:boolean" default="false"
minOccurs="0" />

<xsd:element name="nullable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="length" type="xsd:integer" minOccurs="0" />
<xsd:element name="precision" type="xsd:integer" minOccurs="0" />
<xsd:element name="scale" type="xsd:integer" minOccurs="0" />

<xsd:element name="insertable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="updatable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="column-definition" type="xsd:string"
minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

<l--
Defines a join table for an association mapping, and the columns

used to join to and from that table.
>

<xsd:complexType name="join-table">
<xsd:sequence>

XML Schema

6/25/05 178



Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Public Draft XML Descriptor

<xsd:element name="name" type="xsd:string" minOccurs="0"/>
<xsd:element name="schema" type="xsd:string" minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string" minOccurs="0"/>

<xsd:element name="inverse-join-column" type="join-column"
maxOccurs="unbounded"/>
<xsd:element name="join-column" type="join-column"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--
Defines a join condition from a named column of the current table
to the referenced column of another table.

>

<xsd:complexType name="join-column">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0" />
<xsd:element name="referenced-column-name" type="xsd:string"
minOccurs="0" />
<xsd:element name="secondary-table" type="xsd:string" minOccurs="0" />

<xsd:element name="unique" type="xsd:boolean" default="false"
minOccurs="0" />

<xsd:element name="nullable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="insertable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="updatable" type="xsd:boolean" default="true"
minOccurs="0" />

<xsd:element name="column-definition" type="xsd:string"
minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--
Defines the join condition from the primary key column of the
current table to the primary key column of another table.

>

<xsd:complexType name="primary-key-join-column">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0" />
<xsd:element name="referenced-column-name" type="xsd:string"
minOccurs="0" />
<xsd:element name="column-definition" type="xsd:string"
minOccurs="0" />
</xsd:sequence>
</xsd:complexType>

<l--
Declares a named native EJB QL query.
>

<xsd:complexType name="query">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />

179 6/25/05



Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Public Draft

<xsd:element name="query-string" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<l--

Declares a named native SQL query.
>

<xsd:complexType name="native-query">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="query-string" type="xsd:string"/>
<xsd:choice>
<xsd:element name="result-class" type="xsd:string"/>
<xsd:element name="result-set-mapping" type="result-set-mapping"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<l--

Defines metadata for a native SQL query result set.
>

<xsd:complexType name="result-set-mapping">
<xsd:sequence>
<xsd:element name="name" minOccurs="0"/>
<xsd:element name="entity-result" type="entity-result"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="column-result" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--
Maps column aliases of a native SQL query result set to attributes

of an entity class.
>

<xsd:complexType name="entity-result">
<xsd:sequence>
<xsd:element name="entity-class" type="xsd:string" />
<xsd:element name="discriminator-column" type="xsd:string"
minOccurs="0"/>
<xsd:element name="field-result" type="field-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--

Maps a result set column alias to an attribute name.
>

<xsd:complexType name="field-result">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="column" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

XML Schema

6/25/05

180



Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Public Draft

<l--

Specifies a unique constraint.
>

<xsd:complexType name="unique-constraint">
<xsd:sequence>
<xsd:element name="column-name" type="xsd:string"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<l--
Defines a named table-based id generator.
>

<xsd:complexType name="table-generator">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="table" type="table" minOccurs="0"/>

<xsd:element name="pk-column-name" type="xsd:string" minOccurs="0"/>
<xsd:element name="pk-column-value" type="xsd:string" minOccurs="0"/>

<xsd:element name="value-column-name" type="xsd:string"
minOccurs="0"/>

<xsd:element name="initial-value" type="xsd:integer" default="0"

minOccurs="0"/>

<xsd:element name="allocation-size" type="xsd:integer" default="50"

minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--

Defines a named sequence-based id generator.
>

<xsd:complexType name="sequence-generator">
<xsd:sequence> _
<xsd:element name="name" type="xsd:string"/>

<xsd:element name="sequence-name" type="xsd:string" minOccurs="0"/>
<xsd:element name="initial-value" type="xsd:integer" default="0"

minOccurs="0"/>

<xsd:element name="allocation-size" type="xsd:integer" default="50"

minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--
Enumeration of attribute access types.
>

<xsd:simpleType name="access-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="PROPERTY"/>
<xsd:enumeration value="FIELD"/>
</xsd:restriction>
</xsd:simpleType>

XML Descriptor

181

6/25/05



Sun Microsystems, Inc.

XML Descriptor

Enterprise JavaBeans 3.0, Public Draft

<l--

Enumeration of fetch types.
>

<xsd:simpleType name="fetch-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="LAZY"/>
<xsd:enumeration value="EAGER"/>
</xsd:restriction>
</xsd:simpleType>

<l--
Enumeration of LOB types.
>

<xsd:simpleType name="lob-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="BLOB"/>
<xsd:enumeration value="CLOB"/>
</xsd:restriction>
</xsd:simpleType>

<l--

Enumeration of discriminator column types.
>

<xsd:simpleType name="discriminator-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="INTEGER"/>
<xsd:enumeration value="STRING"/>
<xsd:enumeration value="CHARACTER"/>
</xsd:restriction>
</xsd:simpleType>

<l--

Enumeration of temporal types.
>

<xsd:simpleType name="temporal-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="DATE"/>
<xsd:enumeration value="TIME"/>
<xsd:enumeration value="TIMESTAMP"/>
</xsd:restriction>
</xsd:simpleType>

<l--
Enumeration of cascade styles, specified as, e.g.

<cascade><persist/><merge/></cascade>
>
<xsd:complexType name="cascade-type">
<xsd:sequence>

<!--a list of empty elements -->
<xsd:element name="all" minOccurs="0"/>

XML Schema

6/25/05

182



Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Public Draft

<xsd:element name="persist" minOccurs="0"/>
<xsd:element name="merge" minOccurs="0"/>
<xsd:element name="remove" minOccurs="0"/>
<xsd:element name="refresh" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l--

Enumeration of inheritance types.
>

<xsd:simpleType name="inheritance-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="SINGLE_TABLE"/>
<xsd:enumeration value="JOINED"/>
<xsd:enumeration value="TABLE_PER_CLASS"/>
</xsd:restriction>
</xsd:simpleType>

<l--

Enumeration of generator types.
>

<xsd:simpleType name="generator-type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="TABLE"/>
<xsd:enumeration value="SEQUENCE"/>
<xsd:enumeration value="IDENTITY"/>
<xsd:enumeration value="AUTO"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

XML Descriptor

183

6/25/05



Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Public Draft XML Schema

6/25/05 184



Sun Microsystems, Inc.

XML Schema

Chapter 11

Enterprise JavaBeans 3.0, Public Draft

Related Documents

[1]
[2]
[3]

[4]
[5]
[6]
[7]

Enterprise JavaBeans, v. 3.0. EJB Core Contracts and Requirements.

Related Documents

JSR-250: Common Annotations for the Java Platfdrtp://jcp.org/en/jsr/detail ?id=250

JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail ?id=175

Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.
Enterprise JavaBeans, v 2http://java.sun.com/products/ejb
JDBC 3.0 Specificatiottp://java.sun.com/products/jdbc

Enterprise JavaBeans, Simplified API, v $ifip://java.sun.com/products/ejb

185

6/25/05



Sun Microsystems, Inc.

Related Documents Enterprise JavaBeans 3.0, Public Draft XML Schema

6/25/05 186



Sun Microsystems, Inc.

Early Draft 1 Enterprise JavaBeans 3.0, Public Draft Revision History

Appendix A ReViSion History

This appendix lists the significant changes that have been made during the development of the EJB 3.0
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Persistence APfrom single Early Draft 1 document.
Renamed dependent classes as "embedded classes".
Added support for EJB 2.1 style composite keys for entities.
Added support for BLOBs and CLOBs

Clarified rules for defaulting of O/R mapping when OneToOne, OneToMany, ManyToOne, and Many-
ToMany annotations are used.

187 6/25/05



Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Public Draft Changes Since EDR 2

Clarified default mappings for non-relationship fields and properties.

Clarified exceptions for entity lifecycle operations dfidtityManager  andQuery interface meth-
ods.

Clarified semantics afontains  method.

Renaming of annotations for dependent objects to reflect "embedded" terminology.

Added Embeddedld and IdClass annotations to support composite keys.

Added AttributeOverride annotation to support embedded objects and embedded primary keys.
Added annotations to support BLOB/CLOB mappings.

Renamed GeneratorTable annotation as GeneratedldTable.

Added setFlushMode method to Query interface.

Added missing Transient annotation.

Rename create() method as persist() in EntityManager API, and CREATE as PERSIST in CascadeType
enum.

Provided full definition of EJB QL.

Removed POSITION, CHAR_LENGTH, and CHARACTER_LENGTH as redundant.
Added support for mapping of SQL query results.

Extended EJB QL queries to apply to embedded classes.

Added XML descriptor.

Added Related Documents section.

Updated numerous examples.

A.3 Changes Since EDR 2

Clearer formatting for description of merge operation.
Removed requirements for java.sql.Blob and java.sql.Clob.
Added java.util.Date and java.sql.Date as permitted primary key types.

Added introduction to O/R mapping metadata specification.

6/25/05 188



Sun Microsystems, Inc.

Changes Since EDR 2 Enterprise JavaBeans 3.0, Public Draft Revision History

Removed primary annotation element from UniqueConstraint, Column, and JoinColumn annotations as
redundant.

Clarified that UniqueConstraint applies in addition to unique constraints entailed by primary key map-
pings.

Clarified that PostLoad method should be invoked after refresh.
Added caution about use of business logic in accessor methods when access=PROPERTY.
Clarified that precision and scale apply to decimal columns.

Editorial changes to remove implications that entity lifecycle operations entail implementation in terms
of a “state” model.

Removed entityType and version elements of Entity annotation.

Added note about the use of EJB QL bulk update and delete operations.
Clarified that fetch=LAZY is a hint; implementations may elect to prefetch.
Clarified that only a single version property is required to be supported per class.
Allowed persistent instance variables to be private.

Removed requirement that if access=FIELD, the fields in the primary key class must be public or pro-
tected.

Extended mapping defaults for fields and properties of byte[], Byte[], char[], and Character[] to Basic
mapping type.

Made TemporalType enum top-level; added NONE so that it can be used to specify Basic mapping for
temporal types.

Clarified that query execution methods getResultList and getSingleResult throw lllegalStateException
when called for EJB QL UPDATE or DELETE statements; executeUpdate throws lllegalStateException
when called for EJB QL SELECT statement.

Clarified that constructor names in EJB QL queries must be fully qualified.

Removed requirement for support of BIT_LENGTH function from EJB QL.

The executeUpdate method throws TransactionRequiredException if there is no active transaction.

Clarified that EJB QL delete operation does not cascade.

Added support for use of EntityManager in application-managed environments, including outside of
J2EE containers.

Added EntityManager bootstrapping APIs.

189 6/25/05



Sun Microsystems, Inc.

Revision History Enterprise JavaBeans 3.0, Public Draft Changes Since EDR 2

Added support for extended persistence contexts.

Added support for non-entity classes in the entity inheritance hierarchy.

Added supported support for abstract entity classes in the entity inheritance hierarchy.
Added EmbeddableSuperclass annotation.

Clarifications to EntityManager and Query exceptions.

Added LEFT, EXISTS, ALL, ANY, SOME to EJB QL reserved identifiers.

Renamed InheritanceJoinColumn as PrimaryKeyJoinColumn. Removed usePKasFK from the One-
ToOne annotation, clarifying that PrimaryKeyJoinColumn can be used instead.

Clarified result types for aggregate functions.
Clarification of TRIM function and its arguments.

In OneToOne, OneToMany, ManyToOne, ManyToMany annotations, targetEntity type is Class, note
String.

Merge @Serialized annotation into @Basic.
Added discriminatorColumn element to @EntityResult
Instance variables allowed to be private, package visibility.

Removed restriction about use of identification variable for IS EMPTY in the FROM clause, since this
is no longer true given outer joins.

Removed restriction that @Table must have been explicitly specified if @SecondaryTable is used—this
is unnecessary, since defaults can be used.

Removed specified element for @Column: it is not needed.
Remove operation applied to removed entity is ignored.
EntityManager.find changed to return null if the entity does not exist.
EntityManager.contains doesn’t require a transaction be active.
Added @OrderBy, @MapKey annotations

Clarified rules regarding the availability of detached instances.
Added SIZE function to EJB QL.

Cleaned up EJB QL grammar.

6/25/05 190



Sun Microsystems, Inc.

Changes Since EDR 2 Enterprise JavaBeans 3.0, Public Draft Revision History

Added optional hint to Basic and Lob annotations.

Added EntityManager.getReference().

EJB QL LIKE operator allows string-expressions.

Added chapters with contracts on packaging, deployment, and bootstrapping outside a container.
Merged GeneratedldTable into TableGenerator annotation to resolve overlap between the two.
Updated XML descriptor to match annotations.

Editorial sweep over document.

191 6/25/05



	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 Requirements on the Entity Class
	2.1.1 Persistent Fields and Properties
	2.1.2 Example
	2.1.3 Entity Instance Creation
	2.1.4 Primary Keys and Entity Identity
	2.1.5 Embeddable Classes
	2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
	2.1.7 Entity Relationships
	2.1.8 Relationship Mapping Defaults
	2.1.8.1 Bidirectional OneToOne Relationships
	2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
	2.1.8.3 Unidirectional Single-Valued Relationships
	2.1.8.3.1 Unidirectional OneToOne Relationships
	2.1.8.3.2 Unidirectional ManyToOne Relationships

	2.1.8.4 Bidirectional ManyToMany Relationships
	2.1.8.5 Unidirectional Multi-Valued Relationships
	2.1.8.5.1 Unidirectional OneToMany Relationships
	2.1.8.5.2 Unidirectional ManyToMany Relationships


	2.1.9 Inheritance
	2.1.9.1 Abstract Entity Classes
	2.1.9.2 Non-Entity Classes in the Entity Inheritance Hierarchy
	2.1.9.3 Embeddable Superclasses

	2.1.10 Inheritance Mapping Strategies
	2.1.10.1 Single Table per Class Hierarchy Strategy
	2.1.10.2 Table per Class Strategy
	2.1.10.3 Joined Subclass Strategy



	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Persisting an Entity Instance
	3.2.2 Removal
	3.2.3 Synchronization to the Database
	3.2.4 Detached Entities
	3.2.4.1 Merging Detached Entity State

	3.2.5 Managed Instances
	3.2.6 Transaction Rollback

	3.3 Persistence Context
	3.3.1 Extended Persistence Context

	3.4 Entity Listeners and Callback Methods
	3.4.1 Semantics of the Life Cycle Callback Methods for Entities
	3.4.2 Example

	3.5 Query API
	3.5.1 Query Interface
	3.5.1.1 Example

	3.5.2 Parameter Names
	3.5.3 Named Queries
	3.5.4 Polymorphic Queries
	3.5.5 SQL Queries


	Chapter 4 Query Language
	4.1 Overview
	4.2 EJB QL Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 EJB QL and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Between Expressions
	4.6.8 In Expressions
	4.6.9 Like Expressions
	4.6.10 Null Comparison Expressions
	4.6.11 Empty Collection Comparison Expressions
	4.6.12 Collection Member Expressions
	4.6.13 Exists Expressions
	4.6.14 All or Any Expressions
	4.6.15 Subqueries
	4.6.16 Functional Expressions
	4.6.16.1 String Functions
	4.6.16.2 Arithmetic Functions


	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Constructor Expressions in the SELECT Clause
	4.8.2 Null Values in the Query Result
	4.8.3 Aggregate Functions in the SELECT Clause
	4.8.4 Examples

	4.9 ORDER BY Clause
	4.10 Return Value Types
	4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

	4.11 Bulk Update and Delete Operations
	4.12 Null Values
	4.13 Equality and Comparison Semantics
	4.14 Restrictions
	4.15 Examples
	4.15.1 Simple Queries
	4.15.2 Queries with Relationships
	4.15.3 Queries Using Input Parameters

	4.16 EJB QL BNF

	Chapter 5 EntityManager
	5.1 Entity Managers
	5.2 Obtaining an EntityManager
	5.2.1 Obtaining a Container-managed Entity Manager
	5.2.2 Obtaining an Application-managed Entity Manager
	5.2.2.1 Obtaining an Entity Manager Factory in a J2EE Container
	5.2.2.2 Obtaining an Entity Manager Factory in a J2SE Environment
	5.2.2.3 The EntityManagerFactory Interface
	5.2.2.4 Control of the Application-Managed EntityManager Lifecycle.


	5.3 Controlling Transactions
	5.3.1 JTA EntityManagers
	5.3.2 Resource-local EntityManagers
	5.3.2.1 The EntityTransaction Interface


	5.4 Persistence Contexts
	5.4.1 Container-managed Persistence Contexts
	5.4.1.1 Container-managed Transaction-scoped Persistence Context
	5.4.1.2 Container-managed Extended Persistence Context

	5.4.2 Application-managed Persistence Contexts
	5.4.2.1 Application-managed Transaction-scoped Persistence Context
	5.4.2.2 Application-managed Extended Persistence Context

	5.4.3 Persistence Context Propagation
	5.4.3.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
	5.4.3.2 Persistence Context Propagation Rules for Extended Persistence Contexts


	5.5 Examples
	5.5.1 Container-managed Transaction-scoped Persistence Context
	5.5.2 Container-managed Extended Persistence Context
	5.5.3 Application-managed Transaction-scoped Persistence Context (JTA)
	5.5.4 Application-managed Extended Persistence Context(JTA)
	5.5.5 Application-managed Transaction-scoped Persistence Context (Resource Transaction)
	5.5.6 Application-managed Extended Persistence Context (Resource Transaction)

	5.6 Requirements on the Container
	5.6.1 Persistence Context Management
	5.6.2 Container Managed Persistence Contexts


	Chapter 6 Entity Packaging
	6.1 Persistence Unit
	6.2 Persistence Archive
	6.2.1 persistence.xml file
	6.2.1.1 name
	6.2.1.2 provider
	6.2.1.3 jta-data-source, non-jta-data-source
	6.2.1.4 mapping-file, jar-file, class
	6.2.1.5 properties
	6.2.1.6 Examples

	6.2.2 Default EntityManager

	6.3 Deployment

	Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping
	7.1 J2EE Container Deployment
	7.1.1 Responsibilities of the Container
	7.1.2 Responsibilities of the Persistence Provider
	7.1.3 javax.persistence.spi.PersistenceProvider
	7.1.4 javax.persistence.spi.PersistenceInfo Interface

	7.2 Bootstrapping in J2SE Environments

	Chapter 8 Metadata Annotations
	8.1 Entity
	8.2 Callback Annotations
	8.3 Annotations for Queries
	8.3.1 Flush Mode Annotation
	8.3.2 NamedQuery Annotation
	8.3.3 NamedNativeQuery Annotation
	8.3.4 Annotations for SQL Query Result Set Mappings

	8.4 References to EntityManager and EntityManagerFactory
	8.4.1 PersistenceContext Annotation
	8.4.2 PersistenceUnit Annotation


	Chapter 9 Metadata for Object/Relational Mapping
	9.1 Annotations for Object/Relational Mapping
	9.1.1 Table Annotation
	9.1.2 SecondaryTable Annotation
	9.1.3 SecondaryTables Annotation
	9.1.4 UniqueConstraint Annotation
	9.1.5 Column Annotation
	9.1.6 JoinColumn Annotation
	9.1.7 JoinColumns Annotation
	9.1.8 Id Annotation
	9.1.9 AttributeOverride Annotation
	9.1.10 AttributeOverrides Annotation
	9.1.11 EmbeddedId Annotation
	9.1.12 IdClass Annotation
	9.1.13 Transient Annotation
	9.1.14 Version Annotation
	9.1.15 Basic Annotation
	9.1.16 Lob Annotation
	9.1.17 ManyToOne Annotation
	9.1.18 OneToOne Annotation
	9.1.19 OneToMany Annotation
	9.1.20 JoinTable Annotation
	9.1.21 ManyToMany Annotation
	9.1.22 MapKey Annotation
	9.1.23 OrderBy Annotation
	9.1.24 Inheritance Annotation
	9.1.25 PrimaryKeyJoinColumn Annotation
	9.1.26 PrimaryKeyJoinColumns Annotation
	9.1.27 DiscriminatorColumn Annotation
	9.1.28 Embeddable Annotation
	9.1.29 Embedded Annotation
	9.1.30 EmbeddableSuperclass Annotation
	9.1.31 SequenceGenerator Annotation
	9.1.32 TableGenerator Annotation

	9.2 Examples of the Application of Annotations for Object/Relational Mapping
	9.2.1 Examples of Simple Mappings
	9.2.2 A More Complex Example


	Chapter 10 XML Descriptor
	10.1 XML Schema

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Changes Since EDR 2


